DOI QR코드

DOI QR Code

Heat Conduction Analysis and Improvement of a High-Power Optical Semiconductor Source Using Graphene Layers

그래핀을 적용한 고출력 반도체 광원의 열특성 분석

  • Ji, Byeong-Gwan (School of Information and Communication Engineering, Inha University, LED-Smart Technology Advanced Research Center (LED-STAR)) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University, LED-Smart Technology Advanced Research Center (LED-STAR))
  • 지병관 (인하대학교 정보통신공학과 고성능 LED 조명모듈 핵심기술 연구센터) ;
  • 오범환 (인하대학교 정보통신공학과 고성능 LED 조명모듈 핵심기술 연구센터)
  • Received : 2015.03.19
  • Accepted : 2015.06.03
  • Published : 2015.06.25

Abstract

The heat flow characteristics of a high-power optical semiconductor source have been analyzed using a 3D CFD commercial tool, and the thermal resistance values for each of the layers revealed the places for thermal bottlenecks to be improved. As the heat source of a LD (Laser Diode) has a small volume and a narrow surface, the effective thermal cross-sectional area near it is also quite small. It was possible to expand the cross-sectional area effectively by using graphene layers on the TIM (Thermal Interface Material) layers of a LD chip. The effective values of heat resistance for the layers are compared to confirm the improvement effect of the graphene layers before and after, which can be considered to expand the thermal cross section of the heat transfer path.

고출력 반도체 광원의 열유동 특성을 분석하고, 열전달 병목지점을 파악하여 열저항을 개선하는 방안을 도출하고, 전산모사를 통하여 개선 효과를 확인하였다. 띠구조 활성층을 가진 LD 광원의 경우에 발열부의 부피가 작을 뿐 아니라 발열면적이 좁아서 발열부 근처의 열전달 유효단면적이 매우 좁을 수 밖에 없는데, 이 부근의 경계면에 그래핀층을 추가적으로 적용하면 전체 열저항이 확연히 개선되는 것이 전산모사 되었다. 이는 열전달 경로상의 유효단면적이 넓어지는 효과를 가져와 전체 열저항이 확연히 개선되는 것으로 파악되었다.

Keywords

References

  1. R.-H. Horng, K.-C. Shen, Y.-W. Kuo, and D.-S. Wuu, "GaN light emitting diodes with wing-type imbedded contacts," Opt. Express 21, A1-A6 (2013). https://doi.org/10.1364/OE.21.0000A1
  2. C. Tsou and Y.-S. Huang, "Silicon-based packaging platform for light-emitting diode," IEEE Transactions on Advanced Packaging 29, 607-614 (2006). https://doi.org/10.1109/TADVP.2006.875409
  3. L. Yin, L. Yang, W. Yang, Y. Guo, K. Mac, S. Li, and J. Zhang, "Thermal design and analysis of multi-chip LED module with ceramic substrate," Solid-State Electronics 54, 1520-1524 (2010). https://doi.org/10.1016/j.sse.2010.06.028
  4. C. Weng, "Advanced thermal enhancement and management of LED packages," International Communications in Heat and Mass Transfer 36, 245-248 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2008.11.015
  5. M. arik, C. Becker, S. Wever, and J. Petroski, "Thermal management of LEDs: package to system," Proc. SPIE 5187, 64-75 (2004).
  6. E. Pop, V. Varshney, and A. K. Roy, "Thermal properties of graphene: Fundamentals and applications," MRS BULLETIN 37, 1273-1281 (2012). https://doi.org/10.1557/mrs.2012.203
  7. D. D. L. Chung, "Materials for thermal conduction," Applied Thermal Engineering 21, 1593-1605 (2001). https://doi.org/10.1016/S1359-4311(01)00042-4

Cited by

  1. Thermal Characteristics of a Heat Sink with Bypass Structure for GaN-based Laser Diode vol.27, pp.6, 2016, https://doi.org/10.3807/KJOP.2016.27.6.218