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ABSTRACT

In livestock industry, there is growing interest in methods to increase the production 
efficiency of livestock to address food shortages, given the increasing global population. 
With the advancements in gene engineering technology, it is a valuable tool and has been 
intensively utilized in research specifically focused on human disease. In historically, this 
technology has been used with livestock to create human disease models or to produce 
recombinant proteins from their byproducts. However, in recent years, utilizing gene 
editing technology, cattle with identified genes related to productivity can be edited, 
thereby enhancing productivity in response to climate change or specific disease instead 
of producing recombinant proteins. Furthermore, with the advancement in the efficiency 
of gene editing, it has become possible to edit multiple genes simultaneously. This cattle 
breed improvement has been achieved by discovering the genes through the comprehensive 
analysis of the entire genome of cattle. The cattle industry has been able to address gene 
bottlenecks that were previously impossible through conventional breeding systems. This 
review concludes that gene editing is necessary to expand the cattle industry, improving 
productivity in the future. Additionally, the enhancement of cattle through gene editing is 
expected to contribute to addressing environmental challenges associated with the cattle 
industry. Further research and development in gene editing, coupled with genomic analysis 
technologies, will significantly contribute to solving issues that conventional breeding 
systems have not been able to address.
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INTRODUCTION

Since the 1990s, genetically engineered cattle (GEC) have been produced using several 
techniques, including deletion and insertion, random integration into the host genome, 
and selective genome editing [1]. Initially, GEC had been used to produce recombinant 
pharmaceuticals and understanding human diseases. With increasing global population, 
we will face into food shortages in 2025. It is necessary to solve the food problem and need 
to improve productivity in cattle. Coupling with genetic engineering and analysis tools, 
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such as next-generation sequencing (NGS) to figure out the gene related to productivity, can 
maximize productive efficiency more than the conventional breeding system.

Of the genetic engineering tools currently available, genome editing is remarkably powerful 
to edit bovine endogenous genes. The development of various genome editing tools, such 
as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), 
and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, has made 
genome editing highly convenient and precise. Through the technologies, the cattle 
with improvement of disease resistance, and enhancement of the frequency of alleles or 
polymorphisms that are associated with favorable traits (e.g., lack of horns, heat tolerance, 
and efficient milk or meat production/composition) were produced [2-6]. In addition, gene 
editing can overcome the challenge of random integration into the host genome, which cause 
several risks. This review introduces the need of gene editing technology in cattle industry, 
explaining a general background of gene editing technology and production of cattle with 
superior traits using gene editing and gene analysis. In addition, our review showed DNA-
based genome selection for improving cattle breeds, which involves analyzing the entire 
cattle genome to identify genetic markers associated with desirable traits, is more accurate 
and can improve the speed of genetic progress [7].

PAST TECHNOLOGIES FOR PRODUCING GEC

To date, most GEC have been produced through microinjection and somatic cell nuclear 
transfer (SCNT). Before the development of SCNT in the 1990s, most GEC were generated 
through microinjection, in which nucleic acids are microinjected into the cytoplasm of 
fertilized eggs (zygote). In the 1990s, GEC were produced by microinjecting plasmids or 
viruses carrying the gene of interest. Although the trials were successful, birth rates of GEC 
were very low, at about 12% [8-10]. Moreover, microinjection resulted in genetic mosaicism 
and was unsuitable for use on farm animals because of its high cost, long gestation period, 
small litter sizes, and low transgene integration rates (Fig. 1) [9].
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Fig. 1. Representative techniques for the generation of genetically engineered cattle. SCNT is inefficient at generating healthy calves, while MI is time-consuming 
because of the emergence of mosaicism. 
SCNT, somatic cell nuclear transfer; MI, microinjection.
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Since the 2000s, SCNT has been the most powerful tool for GEC production. This method 
involves the selection of a donor cell with a desired mutation. Subsequently, the nucleus 
of the donor cell is replaced with that of a mature oocyte following which the embryo 
is transplanted (Fig. 1). SCNT led to the development of GEC that express recombinant 
proteins in milk [2,3] and are disease resistant [4,5], and also improved animal welfare [6]. 
However, SCNT-derived calves have numerous health complications because of abnormal 
reprogramming and epigenetic gene regulation [11,12]. Although several efforts have been 
made [13-19] to address these limitations, some issues remain. Nonetheless, SCNT has 
several advantages, including easy selection of donor cells that have the desired gene or 
mutation, analysis when testing in cells, and selection of cells exhibiting high transgene 
expression. Thus, before the development of genome-editing tools (ZFNs, TALENs, and 
CRISPR/Cas9), SCNT was preferred over microinjection.

Before the development of genome-editing tools, GEC were developed through the random 
insertion of the gene of interest into the host genome (Table 1). However, random insertion 
has several potential drawbacks [13,14]. First, the targeted host gene insertion locus can only 
be known after analyzing the transgenic animals using PCR and DNA sequencing. Second, 
gene insertion can alter the expression of endogenous genes. Third, several copies of the 
gene can be inserted into the host genome.

GEC PRODUCTION USING GENOME-EDITING TOOLS 
(ZFNs, TALENs, AND CRISPR/Cas9)
Before the development of targeted genome-editing methods, the genome was modified 
randomly, which was ineffective and expensive for the development of GEC. In addition, 

3/11

State of art on genetically engineered cattle

https://doi.org/10.4142/jvs.23133https://vetsci.org

Table 1. GEC lists produced by random integration
Year Overexpression 

Knock-down 
Knock-out

Gene Method of transgenesis Method of embryo manipulation Target gene Reference

1991 Overexpression Human lactoferrin DNA fragment Microinjection Random [8]
1994 Overexpression Human erythropoietin DNA fragment Microinjection Random [9]
1998 Overexpression Hepatitis B surface antigen Retrovirus Microinjection Random [65]
1999 Overexpression Human alpha-lactalbumin DNA fragment Microinjection Random [10]
2002 Overexpression Human lactoferrin DNA fragment Microinjection Random [66]
2003 Overexpression β- and κ-casein DNA fragment SCNT Random [67]
2004 Overexpression Fluorescent gene Lentivirus Microinjection Random [68]
2004 Overexpression anti-human CD28, anti-human 

melanoma specificity (r28M)
DNA fragment SCNT Random [69]

2005 Overexpression lysostaphin DNA fragment SCNT Random [4]
2006 Overexpression Human growth hormone DNA fragment SCNT Random [2]
2007 Knock-out None DNA fragment SCNT PRNP [5]
2008 Overexpression Human lactoferrin DNA fragment SCNT Random [70]
2009 Overexpression Human DNA fragment SCNT Random [71]

Albumin
2009 Overexpression Human IgG DNA fragment SCNT Random [72]
2011 Knock-down None DNA fragment SCNT PRNP [73]
2012 Knock-down None DNA fragment SCNT BLG [74]
2016 Overexpression Fluorescent gene Sleeping Beauty Microinjection TA [75]
2016 Overexpression Human beta-defensin (HBD3) DNA fragment SCNT Random [76]
2016 Overexpression Fluorescent gene piggyBac Microinjection TTAA [77]
2017 Overexpression hBSSL DNA fragment SCNT Random [78]
2017 Overexpression Human lactoferrin DNA fragment SCNT Random [79]
SCNT, somatic cell nuclear transfer.



there were safety concerns about malfunctioning original genes or effects on gene regulation 
[13,14]. However, the emergence of endonucleases as genome-editing tools helped significantly 
overcome these challenges. The endonucleases that are used for genome editing, including 
ZFNs, TALENs, and CRISPR/Cas9, recognize specific target gene sequences and induce double-
strand breaks (DSBs), which trigger DNA repair via non-homologous end-joining (NHEJ) or 
homology-directed repair (HDR) [15], thereby markedly increasing the efficacy of targeted 
genetic modifications [16].

Because of its ability to accurately edit target loci, genome editing leads to quicker and more 
effective livestock improvements when compared with conventional breeding methods (Fig. 2).  
However, the long-term effects of genome editing are not fully understood and there are 
concerns that although it is less risky than conventional genetic engineering methods, it may 
endanger animal welfare. Barring some minor issues, current genome-editing tools allow 
quick investigation of superior traits, such as productivity, disease resistance, and resilience 
to climate change.

ZFNs

ZFNs were discovered in the 1980s and the first specific one was reported 15 years later. A 
ZFN is comprised of 30 amino acids, with two anti-parallel beta-sheets opposing an alpha-
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Conventional breeding

Pros
· It has been used successfully for centuries to improve the genetic

potential
· Natural process that involves selective mating based on the

observable traits
· Not require the use of sophisticated and expensive laboratory techniques

Cons
· Slow and inefficient process, as it requires multiple generation of animals
· Limitations of phenotypic selection, which relies solely on the

observable physical trait

Genome editing

Pros
· More quickly and efficiently
· New genetic traits that is impossible to achieve through conventional

breeding
· Help to reduce animal suffering by enabling production of animals that

are resistant to diseases

Cons
· Not fully understood about the long-term effects of genetic modification

on animal and the environment
· It raises ethical and safety concerns, including the risk of unintended

genetic mutations
· It is subject to regulation, which can be complex and vary

by country or region

Fig. 2. Breeding methods: conventional breeding vs. genome editing. Although conventional breeding, which is based on observable traits has been used for 
centuries, it is time-consuming because it requires multiple animal generations. Modern breeding techniques that use genome editing can introduce new 
genetic traits that are impossible to transfer through conventional breeding. However, this requires a complete understanding of the long-term effects of genome 
editing and raises ethical and safety concerns.



helix [17]. The alpha-helix can bind three specific bases located in the major groove of 
DNA [18]. ZFNs have a site-specific zinc-finger DNA-binding domain and nonspecific FokI 
endonuclease cleavage domain. Two or more ZFN molecules are required to modify a specific 
gene. In general, ZFNs recognize 9–18 bp that can be specifically edited. Dimerized FokI 
induces DSBs, which trigger NHEJ, through which a specific gene can be blocked, or HDR, 
through which a desired DNA sequence can be inserted into a specific gene. Originally, the 
lengths of homologous arms were 6–7 kb but decreased to 0.5–1.5 kb with the emergence 
of ZFNs [19]. Several GEC produced by ZFN are listed in Table 2. Notable among these was 
the successful mutation of the beta-lactoglobulin (BLG) gene in cattle [20]. BLG protein is 
not present in human milk but is present in significant quantities in whey and is an allergen 
in cow milk. Importantly, the BLG gene modification was stably inherited by subsequent 
generations. Interestingly, milk obtained from the BLG-mutated cows was found to be 
digested by pepsin approximately 30 times faster than normal milk containing BLG [21].

TALENs

TALENs are naturally produced by Xanthomonas, a genus of gram-negative bacteria that infect 
several plant species. TALENs are comprised of DNA-binding domains with 33–35 amino 
acid repeat domains and the nonspecific endonuclease, FokI. The repeat variable di-residue 
(RVD), the amino acid residues on the 12th and 13th positions of the DNA-binding domains, 
recognize single base pairs, with each RVD specifically binding a single genomic DNA 
nucleotide [22,23]. The DNA-binding sequence of TALENs begins with thymidine and the 
target sequence length is 30–40 bp. The DNA-binding domains can be modified to target 
endogenous DNA sequences for cleavage by the nonspecific endonuclease, FokI, thereby 
triggering DNA repair via NHEJ and HDR [20,24-26].

TALENs have several advantages over ZFNs: 1) the TALEN repeat is 3–4 times longer than 
the ZFN repeat and because TALENs recognize one nucleotide, they are more sophisticated 
than ZFNs, which recognize three nucleotides, 2) the ZFN modification requires a high-level 
design because DNA recognition may not be successful because of crosstalk between the 
fingers [27], 3) TALENs are easier to design than ZFNs because they are simpler and their 
production is quicker and more cost-effective, 4) TALENs have less off-target effects than 
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Table 2. GEC lists produced by Zinc-finger nuclease
Year Knock-out 

Knock-in
Inserted gene Method of transgenesis Method of embryo manipulation Target gene Reference

2011 Knock-out None ZFNs mRNA SCNT BLG [20]
2014 Knock-out Human lysozyme ZFNs SCNT BLG [80]

Knock-in
2014 Knock-out None ZFNs SCNT MSTN [81]
2018 Knock-out None ZFNs SCNT BLG [21]
GEC, genetically engineered cattle; ZFN, zinc-finger nuclease; mRNA, messenger RNA; SCNT, somatic cell nuclear transfer.

Table 3. GEC lists produced by TALENs
Year Knock-out 

Knock-in
Inserted gene Method of transgenesis Method of embryo manipulation Target gene Reference

2015 Knock-in Mouse SP110 TALENs SCNT Chr28 [82]
2015 Knock-out None TALENs mRNA Microinjection MSTN [29]
2016 Knock-in Pc POLLED TALENs SCNT POLLED locus [6]
2018 Knock-out None TALENs Microinjection BLG [83]
GEC, genetically engineered cattle; TALEN, transcription activator-like effector nuclease; mRNA, messenger RNA; SCNT, somatic cell nuclear transfer.



ZFNs, and 5) compared with ZFNs, TALENs are more amenable to genome-editing because 
they can be injected into the cytoplasm of livestock embryos [28].

TALENs are a powerful tool for knock out genes in rats and zebrafish [77-79] but they have also 
been used to efficiently mutate genes of interest in cattle, sheep, and pigs [29,30]. Table 3  
summarizes the history of GEC production using TALENs, which was used to develop 
hornless cattle via the introduction of the Pc Celtic POLLED allele into dairy bulls [6]. 
Recently, crossing these bulls with horned cows resulted in the birth of six hornless calves 
and genome analysis confirmed that the calves possess the Pc Celtic POLLED allele without 
any unintended genomic alterations [31].

CRISPR/Cas9

CRISPR, which was discovered in the 1980s, provides adaptive immunity that protects bacteria 
and archaea from bacteriophage invasion [32-35]. CRISPR mediates RNA-guided DNA 
cleavage. The CRISPR/Cas9 system is widely used to induce targeted DSBs. It contains a Cas9 
endonuclease that causes DSBs after recognizing the protospacer adjacent motif downstream 
of a target sequence and a single-guide RNA that interacts with and directs Cas9 to the target 
DNA sequence [84]. The CRISPR/Cas9 system is much more efficient at targeting genes of 
interest than the older gene editing tools (ZFNs and TALENs). Moreover, unlike ZFNs and 
TALENs, which form DNA-protein complexes, CRISPR/Cas9 forms an RNA-protein complex 
(Table 4). Importantly, CRISPR/Cas9 can simultaneously induce DSBs in more than one 
target gene. CRISPR/Cas9 has also been used to generate gene-edited farm animals [36,37]. In 
addition, a one-step method of generating gene-edited animals was developed by introducing 
Cas9 messenger RNA (mRNA) into early zebrafish [38-40], rats [40,41], mice [42-45], rabbits 
[46], pigs [37,47,48], sheep, and cattle embryos [29,49]. The adoption of CRISPR/Cas9 as a 
gene-editing tool has improved the efficiency of gene editing in mammals and allowed the 
generation of highly sophisticated genetically engineered animals [42,50,51].
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Table 4. Comparison of three classes of molecular scissors [84]
Category ZFN TALEN CRISPR/Cas9
Targeting domain Zinc-finger proteins Transcription activator-like effector CRISPR RNA or single-chain guide RNA
Nuclease FokI FokI Cas9/FokI
Biallelic knockout achieved Yes Yes Yes
Average mutation rate ++ +++ +++
Length of recognition domain (bp) 18–36 30–40 20
Restriction in target site G-rich Start with T and end with A Protospacer adjacent motif  

(NGG or NAG) at end of target sequence
Complexity to design vector +++ + +
Off-target events Variable Low Variable, to be determined
Cytotoxicity Variable to high Low Low
Number of plasmids necessary 2 2 1 (2 in case of a CRISPR/FokI construct)
Costs +++ ++ +
ZFN, zinc-finger nuclease; TALEN, transcription activator-like effector nuclease; CRISPR, clustered regularly interspaced short palindromic repeats.

Table 5. GEC lists produced by CRISPR/Cas9

Year Knock-out 
Knock-in

Inserted gene Method of transgenesis Method of embryo manipulation Target gene Reference

2017 Knock-in Correct IARS gene, GFP CRISPR/Cas9 SCNT IARS [85]
2021 Knock-in SRY CRISPR/Cas9 Microinjection Chr17 [65]
2022 Knock-out None CRISPR/Cas9 Microinjection MSTN [62]
GEC, genetically engineered cattle; CRISPR, clustered regularly interspaced short palindromic repeats; SCNT, somatic cell nuclear transfer.



Although CRISPR/Cas9 has greatly increased the efficiency of generating genetically 
engineered animals, there are still limitations to the insertion of foreign genes. For instance, 
inserting foreign genes by HDR is challenging [52-54], especially when large cargoes that 
require extensive cell sorting or selection are involved [55]. Several techniques, including 
the utilization of long single-stranded DNA [56], homology-independent targeted insertion 
[57,58], homology-mediated end-joining (HMEJ) [52,59], microhomology-mediated end 
joining (MMEJ) [60], and targeted integration with linearized double strand DNA [61], have 
been used to enhance knock-in efficiency. However, further studies are required to improve 
knock-in efficiency in mammals. The history of CRISPR/Cas9-generated GEC is summarized 
in Table 5. One of the most recent studies on the generation of GEC using CRISPR/Cas9 
involved the targeted editing of the MSTN gene, which doubled the muscle mass [62]. It 
has been confirmed that the cattle can transmit the MSTN mutation to the next generation, 
indicating stable germline transmission of the trait [63].

GENOMIC SELECTION

The recent increase in CRISPR/Cas9 use has led to the production of specific gene-targeted cattle 
[62,64]. Even in cattle, germline transmission of the specific gene mutation was proven. The 
increasing popularity of specific gene targeting has led to increased research on the genomic 
selection of single nucleotide polymorphisms. In the case of DNA-based genomic selection, 
the improvement rate is relatively objective compared with that of the existing method, which is 
based on phenotypic selection and cannot always be a reliable indicator because of the influence 
of environmental factors (Fig. 2). In addition, the use of genomic selection has advanced cattle 
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Existed breeding system
It is based on observable traits

A

Genetic marker analysis
Find superior traits based on DNA level

B

Genome editing
Introduce new genetic traits

D

Genomic selection
Find cattle with superior traits in young age

C

Fig. 3. An improved breeding system for the future. (A) Cattle generated using an observable traits-based breeding system. (B) Based on DNA sequences, 
genetic marker analysis can detect superior traits that cannot be influenced by the environment. (C) When compared with conventional breeding techniques 
based on physical characteristics, genetic markers can quickly and accurately identify cattle with superior production traits and disease resistance. (D) Genome 
editing can produce genetically engineered cattle with new genetic traits that cannot be found in existing breeds.



breeding by enabling breeders to identify and select animals with superior genetic traits at a 
younger age, which increases efficiency and productivity in the cattle industry.

DISCUSSION

Cattle are known to be a major source of animal protein in the world. With the increasing global 
population, enhancing cattle production efficiency is crucial. While conventional breeding 
systems have improved cattle breeds, gene editing technology can create new cattle breeds with 
higher productivity that conventional breed system cannot achieve. In addition, advances in 
genetic analysis technology have led to a shift from phenotype-based selective breeding to DNA-
based selective breeding. The combination of genomic selection and genome editing can enhance 
superior traits more efficiently and with high accuracy (Fig. 3), especially in areas that have 
traditionally required prolonged periods for improvement. Further development of new breeding 
systems will contribute to solve the problems that conventional breeding systems have previously 
been unable to address.
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