• Title/Summary/Keyword: bonding technology

Search Result 1,569, Processing Time 0.027 seconds

Studies on Bonding Characteristics of Plywood by Kraft Black Liquor and Surface Activators (크라프트펄프 폐액(廢液)과 표면산화제(表面酸化劑)를 이용(利用)한 합판(合板)의 접착특성(接着特性)에 관(關)한 연구(硏究))

  • Chung, In-Ju;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.5-16
    • /
    • 1988
  • This experiment was executed to investigate the effect of activation of veneer surface by oxidizing agents, hydrogen peroxide and nitric acid, on bonding characteristics of Malas(Homalium foetidum Benth) plywood, in which the effects of these oxidizing agents amount, pretreatment time, and pressing time and temperatue on shear strength of the plywood were examined and discussed. In this research the activation of veneer surface by oxidants was effective in raising shear strength but the difference in shear strength was not observed between hydrogen peroxide and nitric acid treatment. Hydrogen peroxide treatment, however, seemed to be more profitable to industrial application because of its lower concentration and easier handling than nitric acid. The bonding method by lignin-phenol adhesive through surface activation revealed inferior shear strength to phenol- and urea-formaldehyde adhesive but superior water resistance to urea-formaldehyde adhesive and this bonding method, in addition, have the advantage of lower cost compared with phenol-formaldehyde adhesive, Therefore, this bonding method by lignin-phenol adhesive through surface activation seemed to economical in manufacturing of water-resistant wood panel materials in future.

  • PDF

Micro Bonding Using Hot Melt Adhesives

  • Bohm, Stefan;Hemken, Gregor;Stammen, Elisabeth;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2006
  • Due to the miniaturization of MEMS and microelectronics the joining techniques also have to be adjusted. The dosing technology with viscous adhesives does not permit reproducible adhesive volumes, which are clearly under a nano-liter. A nano-liter means however a diameter of bonding area within the range of several 100 micrometers. Additional, viscous adhesives need a certain time, until they are cross linked or cured. The problem especially in the MEMS is the initial strength, since it gives the time, which is needed for joining an individual adhesive joint. The time up to the initial strength is with viscous, also with fast curing systems, within the range of seconds until minutes. Until the reach of the initial strength, the micro part must be fixed/held. Without sufficient adjustment/clamping it can come to a shift of the micro parts. Also existing micro adhesive bonding processes are not batch able, i.e. the individual adhesive joints of a micro system must be processed successively. In the context of the WCARP III 2006 now an innovative method is to be presented, how it is possible to solve the existing problems with micro bonding. i.e. a method is presented, which is batch able, possess a minimum joining geometry with some micrometers and is so fast that no problems with the initial strength arise. It is a method, which could revolutionize the sticking technology in the micro system engineering.

  • PDF

Thermo-ompression Process for High Power LEDs (High Power LED 열압착 공정 특성 연구)

  • Han, Jun-Mo;Seo, In-Jae;Ahn, Yoomin;Ko, Youn-Sung;Kim, Tae-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.355-360
    • /
    • 2014
  • Recently, the use of LED is increasing. This paper presents the new package process of thermal compression bonding using metal layered LED chip for the high power LED device. Effective thermal dissipation, which is required in the high power LED device, is achieved by eutectic/flip chip bonding method using metal bond layer on a LED chip. In this study, the process condition for the LED eutectic die bonder system is proposed by using the analysis program, and some experimental results are compared with those obtained using a DST (Die Shear Tester) to illustrate the reliability of the proposed process condition. The cause of bonding failures in the proposed process is also investigated experimentally.

Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5D/3D Integrated System

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2016
  • We propose nano-scale Cu direct bonding technology using ultra-high density Cu nano-pillar (CNP) with for high stacking yield exascale 2.5D/3D integration. We clarified the joining mechanism of nano-scale Cu direct bonding using CNP. Nano-scale Cu pillar easily bond with Cu electrode by re-crystallization of CNP due to the solid phase diffusion and by morphology change of CNP to minimize interfacial energy at relatively lower temperature and pressure compared to conventional micro-scale Cu direct bonding. We confirmed for the first time that 4.3 million electrodes per die are successfully connected in series with the joining yield of 100%. The joining resistance of CNP bundle with $80{\mu}m$ height is around 30 m for each pair of $10{\mu}m$ dia. electrode. Capacitance value of CNP bundle with $3{\mu}m$ length and $80{\mu}m$ height is around 0.6fF. Eye-diagram pattern shows no degradation even at 10Gbps data rate after the lamination of anisotropic conductive film.

A Study on Properties of HTPB/AP/Al Propellant to Contents of Bonding Agents (결합제 함량에 따른 HTPB/AP/Al 추진제의 특성 연구)

  • Lee, Youngwoo;Ha, Sura;Jang, Myungwook;Kim, Taekyu;Lee, Jungjoon;Son, Hyunil
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • The propellant tile and crack which account for the greatest proportion of solid rockets are profoundly affected by viscosity and mechanical properties of solid propellant. In this paper HTPB/AP/Al system propellant has been researched for the viscosity, mechanical properties and burning properties with type and contents of bonding agents. The viscosity of propellant was changed significantly depending on the type and contents of bonding agents, and mechanical properties of HTPB/AP/Al system propellant were also varied. Considering both lower viscosity and stable mechanical properties, the optimum type and contents of bonding agents can be identified as the main factors to the HTPB/AP/Al system propellant.

Implications of the Periodicity in NMR Chemical Shifts and Temperature Coefficients of Amide Protons in Helical Peptides

  • Suh, Jeong-Yong;Choi, Byong-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.127-138
    • /
    • 2004
  • We obtained the chemical shifts of amide protons (NHs) in helical peptides at various temperatures and trifluoroethanol (TFE) concentrations using 2-dimensional NMR spectroscopy. These NH chemical shifts and their temperature dependence exhibited characteristic periodicity of 3-4 residues per cycle along the helix, where downfield shifted NHs showed larger temperature dependence. In an attempt to understand these observations, we focused on hydrogen bonding changes in the peptides and examined the validity of two possible explanations: (1) changes in intermolecular hydrogen bonding caused by differential solvation of backbone carbonyl groups by TFE, and (2) changes in intramolecular hydrogen bonding due to disproportionate variations in the hydrogen bonding within the peptide helix. Interestingly, the slowly exchanging NHs, which were on the hydrophobic side of the helix, showed consistently larger temperature dependences. This could not be explained by the differential solvation assumption, because the slowly exchanging NHs would become more labile if the preceding carbonyl groups were preferentially solvated by TFE. We suggest that the disproportionate changes in intramolecular hydrogen bonding better explain both the temperature dependence and the exchange behavior observed in this study.

  • PDF

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Mechanical evaluation of SiC-graphite interface of seed crystal module for growing SiC single crystals (탄화규소 단결정 성장을 위한 종자결정모듈의 탄화규소-흑연 간 접합계면의 기계적 특성 평가)

  • Kang, June-Hyuk;Kim, Yong-Hyeon;Shin, Yun-Ji;Bae, Si-Young;Jang, Yeon-Suk;Lee, Won-Jae;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.212-217
    • /
    • 2022
  • Large thermal stress due to the difference between silicon carbide and graphite's coefficients of thermal expansion could be formed during crystal growing process of silicon carbide (SiC) at high temperature. The large thermal stress could separate the SiC seed crystals from graphite components, which bring about the drop of the seed crystal during crystal growth. However, the bonding properties of SiC seed crystal module has hardly reported so far. In this study, SiC and graphite were bonded using 3 types of bonding agents and a three-point bending tests using a mixed-mode flexure test were conducted for the bonded samples to evaluate the bonding characteristics between SiC and graphite. Raman spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Computed Tomography were used to analyze the bonding characteristics and the microstructures of the SiC-graphite interfaces bonded with the bonding agents. As results, an excellent bonding agent was chosen to fabricate SiC seed crystal module with 50 mm in diameter. An SiC single crystal with 50 mm in diameter was successfully grown without falling out during top seeded solution growth of SiC at high temperature.

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.