• Title/Summary/Keyword: bonding glass

Search Result 430, Processing Time 0.023 seconds

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Warpage and Solder Joint Strength of Stacked PCB using an Interposer (인터포저를 이용한 Stacked PCB의 휨 및 솔더 조인트 강도 연구)

  • Kipoong Kim;Yuhwan Hwangbo;Sung-Hoon Choa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Recently, the number of components of smartphones increases rapidly, while the PCB size continuously decreases. Therefore, 3D technology with a stacked PCB has been developed to improve component density in smartphone. For the s tacked PCB, it i s very important to obtain solder bonding quality between PCBs. We investigated the effects of the properties, thickness, and number of layers of interposer PCB and sub PCB on warpage of PCB through experimental and numerical analysis to improve the reliability of the stacked PCB. The warpage of the interposer PCB decreased as the thermal expansion coefficient (CTE) of the prepreg decreased, and decreased as the glass transition temperature (Tg) increased. However, if temperature is 240℃ or higher, the reduction of warpage is not large. As FR-5 was applied, the warpage decreased more compared to FR-4, and the higher the number and thickness of the prepreg, the lower the warpage. For sub PCB, the CTE was more important for warpage than Tg of the prepreg, and increase in prepreg thickness was more effective in reducing the warpage. The shear tests indicated that the dummy pad design increased bonding strength. The tumble tests indicated that crack occurrence rate was greatly reduced with the dummy pad.

Shear Bonding Strength of Three Cements Luted on Pediatric Zirconia Crowns and Dentin of Primary Teeth (3종 시멘트로 접착한 소아용 기성 지르코니아 전장관과 유치 상아질의 전단결합강도)

  • Lee, Jeongeun;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.314-323
    • /
    • 2018
  • The aim of this study was to evaluate the shear bond strength of three luting cements and to identify the effect of thermocycling. Zirconia discs were made similar to the inner surface of a preformed pediatric zirconia crown ($NuSmile^{(R)}$ ZR crown: ZRCr). The similarity between the zirconia discs and the inner surface of a ZRCr was confirmed by scanning electron microscope. Three luting cements were $Ketac^{TM}$ Cem Permanent Glass Ionomer Luting Cement (KGI), $RelyX^{TM}$ Luting Plus Cement (RLP), $RelyX^{TM}$ Unicem Self-Adhesive Universal Resin Cement (RUR). Three luting cements were bonded according to the manufacturer's instructions for 60 zirconia discs and 60 dentin of primary teeth. Total of 120 specimens were divided into two subgroups: One was not aged, and the other was tested with 5500 thermocycling. Shear bond strength was measured using a universal testing machine, and the fracture patterns were observed with SEM. On the zirconia discs and the dentin of primary teeth, shear bond strength of RUR was higher than that of KGI and RLP, and there were statistically significant differences by cement type. The shear bond strength differences for RUR were not statistically significant depending on thermocycling.

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

A Study on the Bond Strength of BCB-bonded Wafers (BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.479-486
    • /
    • 2007
  • Four point bending is used to study the dependences of bond strength of benzocyclobutene(BCB) bonded wafers and BCB thickness, the use of an adhesion promoter, and the materials being bonded. The bond strength depends linearly on BCB thickness, due to the thickness-dependent contribution of the plastic dissipation energy of the BCB and thickness independence of BCB yield strength. The bond strength increases by about a factor of two with an adhesion promoter for both $2.6{\mu}m$ and $0.4{\mu}m$ thick BCB, because of the formation of covalent bonds between adhesion promoter and the surface of the bonded materials. The bond strength at the interface between a silicon wafer with deposited oxide and BCB is about a factor of three higher than that at the interface between a glass wafer and BCB. This difference in bond strength is attributed to the difference in Si-O bond density at the interfaces. At the interfaces between plasma enhanced chemical vapor deposited (PECVD) oxide coated silicon wafers and BCB, and between thermally grown oxide on silicon wafers and BCB, 12~13 and $15{\sim}16bonds/nm^2$ need to be broken. This corresponds to the observed bond energies, $G_0s$, of 18 and $22J/m^2$, respectively. Maximum 7~8 Si-O $bonds/nm^2$ are needed to explain the $5J/m^2$ at the interfaces between glass wafers and BCB.

Bonding Performance of Glulam Reinforced with Glass Fiber-Reinforced Plastics (유리섬유강화플라스틱 복합집성재의 접착성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.357-363
    • /
    • 2009
  • This study was carried out to investigate whether adhesive used in manufacturing glulam can be used to bond wood and GFRP, when considering working process and economical efficiency. The six different glulams were manufactured, changing the adhesives and the mixing ratios of the adhesives, and investigated by the block shear test and the delamination of the water soaking or boiling water soaking. The three glulams were manufactured, using the resocinol resin based adhesive, the PVAc resin based adhesive and the epoxy resin adhesive, and the other three glulams, using the adhesives mixing resocinol resin and PVAc resin. The block shear strength is higher than $7.1N/mm^2$ in all types, which is standard of KS F3021. However, in the wood failure the block shear strength was the highest as 65.9% in the PVAc. The delamination of glulams glued with PVAc adhesive, which was 1.08% in water soaking and 4.16% in boiling water soaking, was lower than 5.00% which is the standard of KS F 3021, and the adhesive strength is good. In glulams glued with only resocinol resin adhesive, the wood layers were good as 1.26% in the water soaking delamination and 0.00% in the boiling water soaking delamination. The GFRP layers were not good as 21.85% in the water soaking delamination but were good as 1.45% in the boiling water soaking delamination.

In vitro study of compressive fracture strength of Empress 2 crowns cemented with various luting agents

  • Kim Min-Ho;Yang Jae-Ho;Lee Sun-Hyung;Chung Hun-Young;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic restorations because of their low strength. Their relatively lower strength and resistance to fracture have restricted the use of all-ceramic crowns to anterior applications where occlusal loads are lower. But there has been increasing interest in all-ceramic restorations because patients are primarily concerned with improved esthetics. Many efforts have been made to in prove the mechanical properties of dental ceramics. This study was designed to elucidate the influence of the luting agent on the strength of the Empress 2 crown (staining technique) cemented on human teeth. Seventy extracted human permanent molar teeth were chosen. Teeth were prepared for Empress 2 crowns with milling machine on a surveyor. A dental bur was placed in the mandrel that was positioned so that the long axis of the bur was perpendicular to the surveyor base. Dimensions of the Empress 2 crown preparation were $6^{\circ}$ taper on each side, $1.5{\pm}0.1mm$ shoulder margin, and 4mm crown height. The luting cements used in this study were as follow: 1. Uncemented 2. Zinc phosphate cements (Confi-Dental) 3. Conventional glass ionomer cement : Fuji 1 (GC) 4. Resin-modified glass ionomer cements : Fuji plus (GC) 5. Adhesive cements : Panavia F (Kuralay), Variolink II (Vivadent), Choice (Bisco). Fracture test using Instron. The crowns were loaded in compressive force to evaluate the effect of these cements on the breaking strength of these all-ceramic crowns. A steel ball with a diameter of 4mm was placed on the occlusal surface and load was applied to the steel ball by a cylindrical bolt with a crosshead speed of 0.5mm per minute until fracture occurred. The fractured surface was examined using Scanning Electron Microscopic Image (SEM) to discover the correlation between fracture strength and bonding capacity. Within the limitation of this in vitro study design, the results were as follows : 1. fomentations significantly increased the fracture resistance of Empress ceramic crowns compared to control. Uncemented (206.9 N): ZPC (812.9 N): Fuji 1 (879.5 N): Fuji Plus (937.7 N): Choice (1105.4 N): Variolink II (1221.1 N): Panavia F (1445.2 N). 2. Resin luting agent, treated by a silane bond enhancing agents, yielded a significant increase in fracture resistance. In some of the Panavia F group, a fracture extended into dentin. 3. According to SEM images of fractured Empress crowns, the stronger the bond at both interfaces(crown and die), the more fracture strength was acquired.

  • PDF

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

Difference in Bonding Strength of RMGIC according to Type of Hemostatic Agent in Primary Tooth (지혈제의 종류에 따른 레진 강화형 글라스아이오노머 시멘트 결합력의 차이)

  • Back, Seolah;Lee, Joonhaeng;Kim, Jongbin;Han, Miran;Kim, Jong Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.460-466
    • /
    • 2021
  • The purpose of this study was to compare the effect of the hemostatic agent containing aluminum chloride with hemostatic agent containing ferric sulfate on the shear bond strength of resin-modified glass ionomer cement(RMGIC) to dentin in primary tooth. Twenty extracted non-carious human primary teeth were collected in this study. The specimens were cut to expose dentin and polished. The specimens were randomly seperated into 3 groups for treatment; group I: polyacrylic acid(PAA), RMGIC; group II: aluminum chloride, PAA, RMGIC; group III: ferric sulfate, PAA, RMGIC Ten specimens from each group were subjected to shear bond strength test. The mean shear bond strength of each group was as follows: 10.07 ± 1.83 MPa in Group I, 7.62 ± 0.78 MPA in group II, 5.23 ± 0.78 MPa in group III. There were significant differences among all groups(p < 0.001). In conclusion, both aluminum chloride hemostatic agent and ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC to dentin. And ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC more than the aluminium chloride hemostatic agent.

Effect of Aluminum Chloride Hemostatic Agent on Bonding Strength of RMGIC in Primary Tooth (염화알루미늄 지혈제가 유치와 레진강화형 글라스아이오노머 시멘트의 결합강도에 미치는 영향)

  • Woo, Seung-Hee;Shin, Jisun;Lee, Joonhaeng;Han, Miran;Kim, Jong Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.397-404
    • /
    • 2021
  • The purpose of this study was to evaluate the effect of a hemostatic agent containing aluminum chloride on the shear bond strength of resin-modified glass ionomer cement (RMGIC) to the dentin of primary teeth. Thirty-six extracted non-carious human primary teeth were collected in this study. Dentin surfaces were cut and polished. The specimens were randomly divided into 4 groups; group I: RMGIC without conditioning; group II: polyacrylic acid (PAA), RMGIC; group III: aluminum chloride, RMGIC; group IV: aluminum chloride, PAA, RMGIC. All teeth were thermocycled between 5.0℃ and 55.0℃ for 5000 cycles. Fifteen specimens from each group were subjected to shear bond strength test and 3 specimens from each group were inspected using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. The mean shear bond strength of each group was as follows: 4.04 ± 0.88 MPa in group I, 8.29 ± 1.40 MPa in group II, 1.39 ± 0.47 MPa in group III, 6.24 ± 2.76 MPa in group IV. There were significant differences among all groups (p < 0.001). SEM image of the dentinal tubules were partially exposed in group III and group IV. Fully exposed dentinal tubules were found in group II. In conclusion, aluminum chloride decreased the shear bond strength of RMGIC to dentin, regardless of PAA conditioning.