A Study on the Bond Strength of BCB-bonded Wafers

BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구

  • Kwon, Yongchai (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Seok, Jongwon (School of Mechanical Engineering, College of Engineering, Chung-Ang University) ;
  • Lu, Jian-Qiang (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute) ;
  • Cale, Timothy (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute) ;
  • Gutmann, Ronald (Focus Center-New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute)
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 석종원 (중앙대학교 기계공학부) ;
  • ;
  • ;
  • Received : 2007.05.20
  • Accepted : 2007.07.02
  • Published : 2007.10.31

Abstract

Four point bending is used to study the dependences of bond strength of benzocyclobutene(BCB) bonded wafers and BCB thickness, the use of an adhesion promoter, and the materials being bonded. The bond strength depends linearly on BCB thickness, due to the thickness-dependent contribution of the plastic dissipation energy of the BCB and thickness independence of BCB yield strength. The bond strength increases by about a factor of two with an adhesion promoter for both $2.6{\mu}m$ and $0.4{\mu}m$ thick BCB, because of the formation of covalent bonds between adhesion promoter and the surface of the bonded materials. The bond strength at the interface between a silicon wafer with deposited oxide and BCB is about a factor of three higher than that at the interface between a glass wafer and BCB. This difference in bond strength is attributed to the difference in Si-O bond density at the interfaces. At the interfaces between plasma enhanced chemical vapor deposited (PECVD) oxide coated silicon wafers and BCB, and between thermally grown oxide on silicon wafers and BCB, 12~13 and $15{\sim}16bonds/nm^2$ need to be broken. This corresponds to the observed bond energies, $G_0s$, of 18 and $22J/m^2$, respectively. Maximum 7~8 Si-O $bonds/nm^2$ are needed to explain the $5J/m^2$ at the interfaces between glass wafers and BCB.

BCB 수지를 이용하여 본딩한 웨이퍼의 BCB 두께, 본딩 촉진제의 사용여부 및 이웃하는 적층 물질의 종류에 따른 본딩 결합력에 대한 영향을 4-점 굽힘방법을 이용하여 규명한다. 실험결과 본딩 결합력은 BCB 두께에 선형 비례하는데, 이는 BCB의 소성 변형의 정도가 두께에 비례하는 반면에 BCB의 항복 강도에는 영향을 미치지 않기 때문이다. 본딩한 BCB의 두께가 각각 $2.6{\mu}m$$0.4{\mu}m$인 경우에 대하여 본딩 촉진제를 사용 했을 때, 본딩 촉진제와 본딩된 물질의 표면에서는 공유 결합이 형성되기 때문에 본딩 결합력이 증가한다. 산화 규소막이 증착된 실리콘 웨이퍼와 BCB 사이 계면에서의 본딩 결합력은 글래스 웨이퍼와 BCB 사이의 계면에서 보다 약 3배 정도 높다. 이러한 본딩 결합력의 차이는 각 계면에서 Si-O 본드의 본딩 밀도 및 본드 파단 에너지의 차이에 기인한다. PECVD 산화 규소막을 증착한 실리콘 웨이퍼와 BCB 사이 계면의 경우, 기 측정된 $18J/m^2$$22J/m^2$의 본드 파단 에너지를 얻기 위해 각각 약 $12{\sim}13bonds/nm^2$$15{\sim}16bonds/nm^2$의 Si-O 본드 밀도가 필요하다. 반면에, 글래스 웨이퍼와 BCB 사이 계면의 경우에는 기 측정된 $5J/m^2$의 본드 파단 에너지를 얻기 위해 약 $7{\sim}8bonds/nm^2$의 Si-O 본드 밀도가 필요하다.

Keywords

References

  1. International Technology Roadmap for Semiconductors (ITRS): 2003 Edition(Semiaconductor Industry Association, 2003)
  2. Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., Saraswat, K. C., Rahman, A., Reif, R. and Meindl, J. D., 'Interconnect Limits on Gigascale Integration (GSI) in the 21st Century,' Proc. IEEE, 89(3), 305-324(2001)
  3. Gutmann, R. J., Lu, J.-Q., Pozder, S., Kwon, Y., Jindal, A., Celik, M., McMahon, J. J., Yu, K. and Cale, T. S., 'A Wafer-Level 3D IC Technology Platform,' Adv. Metall. Conf. (AMC), 19-22(2003)
  4. Burns, J., McIlrath, J. L., Keast, C., Lewis, C., Loomis, A., Warner, K. and Wyatt, P., 'Three-Dimensional Integrated Circuits for Low-Power, High-Bandwidth Systems on a Chip,' 2001 IEEE Int'l Solid-State Circ. Conf., 268-270(2001)
  5. Lu, J.-Q., Kwon, Y., Kraft, R. P., Gutmann, R. J., McDonald, J. F. and Cale, T. S., 'Stacked Chip-to-Chip Interconnections using Wafer Bonding Technology with Dielectric Bonding Glues,' 2001 IEEE Int'l Interconnect Technol. Conf., 219-221(2001)
  6. Kuhr, M., Bauer, S., Rothhaar, U. and Wolff, D., 'Coatings on Plastics with The PICVD Technology,' Thin Solid Films, 442(1), 107-114(2003) https://doi.org/10.1016/S0040-6090(03)00956-8
  7. Kwon, Y., Jindal, A., McMahon, J. J., Lu, J.-Q., Gutmann, R. J. and Cale, T. S., 'Dielectric Glue Wafer Bonding for 3D Ics,' Mater. Res. Soc. Symp. Proc., 766, 27-32(2003)
  8. Kwon, Y., Lu, J.-Q., Kraft, R. P., Gutmann, R. J., McDonald, J. F. and Cale, T. S., 'Wafer Bonding using Dielectric Polymer Thin Films in 3D Integration,' Mater. Res. Soc. Symp. Proc., 710, 231-236 (2002)
  9. Lingk, C., Gross, M. E. and Brown, W. L., 'Texture Development of Blanket Electroplated Copper Films,' J. Appl. Phys., 87(5), 2232-2236(2000) https://doi.org/10.1063/1.372166
  10. Rye, R. R. and Ricco, A. J., 'Patterned Adhesion of Electrolessly Depositied Copper on Poly(tetrafluoroethylene),' J. Electrochem. Soc., 140(6), 1763-1768(1993) https://doi.org/10.1149/1.2221638
  11. Hohlfelder, R. J., Maidenberg, D. A. and Dauskardt, R. H., 'Adhesion of Benzocyclobutene-Passivated Silicon in Epoxy Layer Structures,' J. Mater. Res., 16(1), 243-255(2000) https://doi.org/10.1557/JMR.2001.0037
  12. Im, J.-H., University of Texas, Austin, TX, private communication
  13. Charalambides, P. G., Lund, J., Evans, A. G. and McMeeking, R. M., 'A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,' J. Appl. Mech., 56(1), 77-82(1989) https://doi.org/10.1115/1.3176069
  14. Kook, S.-Y. and Dauskardt, R. H., 'Moisture-Assisted Subcritical Debonding of A Polymer/Metal Interface,' J. Appl. Phys., 91(3), 1293-1303(2002) https://doi.org/10.1063/1.1427139
  15. Volinsky, A. A., Moody, N. R. and Gerberich, W. W., 'Interfacial Toughness Measurements for Thin Films on Substrates,' Acta Met., 50(3), 441-466(2002) https://doi.org/10.1016/S1359-6454(01)00354-8
  16. Kwon, Y., Seok, J., Lu, J.-Q., Cale, T. S. and Gutmann, R. J., 'Thermal Cycling Effects on Critical Adhesion Energy and Residual Stress in Benzocyclobutene-Bonded Wafers,' J. Electrochem. Soc., 152(4), G286-G294(2005)
  17. Suo, Z. and Hutchinson, J. W., 'Steady-State Cracking in Brittle Substrates beneath Adherent Films,' Int. J. Solids Struc., 25(11), 1337-1353(1989) https://doi.org/10.1016/0020-7683(89)90096-6
  18. Litteken, C. S. and Dauskardt, R. H., 'Adhesion of Polymer Thin Films and Patterned Lines,' Int. J. Fract., 119/120(1-2), 475-485 (2003) https://doi.org/10.1023/A:1024940132299
  19. Tymiak, N. I., Volinsky, A. A., Kriese, M. D., Downs, S. A. and Gerberich, W. W., 'The Role of Plasticity in Bimaterial Fracture with Ductile Interlayers,' Metallurgical and Materials Transactions A, 31, 863(2000) https://doi.org/10.1007/s11661-000-1006-1
  20. Varias, A. G., Suo, Z. and Shih, C. F., 'Ductile Failure of A Constrainted Metal Foil,' J. Mech. Phys. Solids, 39(7), 963-986(1991) https://doi.org/10.1016/0022-5096(91)90014-F
  21. PG&O 1737 Glass Wafer Technical Data Sheets, Precision Glass & Optics, Santa Ana, CA, 2002
  22. Jenkins, M. L., Dauskardt, R. H. and Bravman, J. C., 'Important Factors for Silane Adhesion Promoter Efficiency: Surface Coverage, Functionality and Chain Length,' J. Adhesion Sci. Technol., 18(13), 1497-1516(2004) https://doi.org/10.1163/1568561042411268
  23. Garbowski, B. J., Corning Incorporates, Corning, NY, private communication
  24. Doremus, R. H., Glass Science, John Wiley & Sons, New York(1994)
  25. Garde, S., Rensselaer Polytechnic Institute, Troy, NY, Private Communication
  26. Israelachvili, J. N., Intermolecular and Surface Forces, Academic Press, London(1991)
  27. CRC Handbook of Chemistry and Physics, CRC Press LLC, Boca Raton(2001)