• Title/Summary/Keyword: body-centered-tetragonal

Search Result 9, Processing Time 0.033 seconds

Synthesis and Magnetic Properties of Body-centered-tetragonal Fe-Co Alloy (체심정방정 구조 Fe-Co계 합금상의 합성 및 그 자기적 특성)

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.129-134
    • /
    • 2017
  • Bulk-type body-centered-tetragonal Fe-Co alloy was synthesised by utilising a conventional alloy preparation technologies, such as melting, solidification, and homogenising treatments, and its magnetic properties were investigated. In the $(Fe_{100-x}Co_x)_{1-y}C_y$ alloy, the composition range, from which single phase body-centered-tetragonal alloy (martensite phase) was obtained, was severely limited: Co content x = 2.5, and C content y = 0.062. Tetragonality(c/a) of the synthesised body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was 1.05. Magnetocrystalline anisotropy constant ($K_1$) of the body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was measured to be $9.8{\times}10^5J/m^3$), which was 3.1 time as high as the pure iron (${\alpha}-Fe$).

Thermal Annealing Effect on the Machining Damage for the Single Crystalline Silicon (단결정 실리콘의 기계적 손상에 대한 열처리 효과)

  • 정상훈;정성민;오한석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.770-776
    • /
    • 2003
  • #140 mesh and #600 mesh wheels were adopted to grind (111) and (100) oriented single crystalline silicon wafer and the grinding induced change of the surface integrity was investigated. For this purpose, microroughness, residual stress and phase transformation were analyzed for the ground surface. Microroughness was analyzed using AFM (Atomic Force Microscope) and crystal structure was analyzed using micro-Raman spectroscopy. The residual stress and phase transformation were also analyzed after thermal annealing in the air. As a result, microroughness of (111) wafer was larger than that of (100) wafer after grinding. It was observed using Raman spectrum that the silicon was transformed from diamond cubic Si-I to Si-III(body centered tetragonal) or Si-XII(rhombohedral). Residual stress relaxation was also shown in cavities which were produced after grinding. The thermal annealing was effective for the recovery of the silicon phase to the original phase and the residual stress relaxation.

Design and analysis of two-dimensional binary phase masks for the fabrication of two-and three-dimensional periodic structures (2차원 및 3차원의 주기적인 구조 제작을 위한 2차원 이진 위상마스크의 설계와 분석)

  • 김남식;원영희;고근하;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • Two-dimensional binary-phase diffraction gratings which can be employed to fabricate two- and three-dimensional periodic structures are designed and analyzed using rigorous coupled-wave analysis. These gratings serve as phase-masks which generate several diffracted waves from a normally incident beam and thus can produce a periodic interference pattern in space via nearfield holography. The properties of the diffracted beams can be controlled by varying the polarization and wavelength of the incident beam, surface-profile, groove depth and duty cycle of the mask. For the two-dimensional structure, optimum results can be obtained when the diffraction efficiency of the zero-order beam is minimized while that of the first-order maximized. On the other hand, when the diffraction efficiency of the zero-order is appreciable or even greater than other orders, we can obtain a variety of three-dimensional interference patterns which may be used to fabricate photonic crystals of tetragonal-body-centered and hexagonal structures in a submicron scale. scale.

  • PDF

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Precipitation In Inconel 718 Alloy

  • Park, Hyung-Sup;Park, Ju
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.203-213
    • /
    • 1972
  • The precipitation sequence of Inconel 718 alloy, aged at $760^{\circ}C$ for times up to 200 hr, has been studied by means of electron microscopy and X-ray diffraction methods. The dominant hardening phase was identified as the metastable, body-centered tetragonal $Ni_3Nb$ Phase in the morphology of platelets. The other phases identified in the aging sequence were (Nb, Ti)C and the stable acicular phase of orthorhombic $Ni_3Nb.$ The observations were made on the interaction of dislocations with the precipitates in the underaged condition. The shearing of the precipitates and the planar defects, e.g., stacking faults on i1101 planes of the intermetallic phase, were observed.

  • PDF

Recent developments of manganese-aluminium as rare-earth-free magnets

  • Sirisathitkul, Chitnarong
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.323-335
    • /
    • 2020
  • This article reviews findings and progresses in the past decade on manganese-aluminium (MnAl) based magnets as the interest has been revived to fulfill their potential as commercial magnets. The challenges in developments of these rare-earth-free magnets are to acquire a high remanence and coercivity from the ferromagnetic τ-phase in MnAl alloys. To this end, the phase transformation to this τ-MnAl with L10 body centered tetragonal structure has been promoted by a variety of methods and a few percents of carbon (C) is often added to prevent the phase decomposition. Magnetization and coercivity are not only influenced by the phase composition but also the microstructure. The fabrication processes and factors affecting the phase and microstructure are therefore covered. Finally, the productions of bulk MnAl magnets are addressed.

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process (염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성)

  • Hwangbo, Young;Lim, Hyo Ryoung;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Synthesis of $CaCrO_4$Powders for the Cathode Material of Thermal Battery by GNP and Electrochemical Properties of Ca/LiCl-KCl/$CaCrO_4$Thermal Battery System (GNP 방법에 의한 Thermal Battery용 양극 재료 $CaCrO_4$분말 합성 및 Ca/LiCl-KCl/$CaCrO_4$전지계의 전기 화학적인 특성 평가)

  • 이현주;김영석;김선재;이창규;김홍회;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • Ca/LiCl-KCl/CaCrO$_4$열 전지계의 양극재료로서 BCT(Body-Centered Tetragonal) 결정구조를 갖는 CaCrO$_4$분말을 GNP로 합성하고, SEM, TEM, XRD를 이용하여 그 미세구조를 분석하였다. GNP 공정에 의한 CaCrO$_4$분말은 단일상으로 0.5$mu extrm{m}$ 이하의 입자 크기를 가지며 균일하게 분포한 반면, 기존의 분말 혼합법은 높은 하수 온도 및 장시간의 하소 조건을 필요하므로 미세한 분말 합성이 어렵고 pellet 형태로 만들었을 때 GNP 분말에 비해 비표면적이 현저하게 작기 때문에 전극 재료로써 유리하지 못하다. Ca/LiCl-KCl/CaCrO$_4$계의 전기 화학적인 특성을 평가해본 결과 전지셀을 Ca/DEB(LiCl-KCl+CaCrO$_4$+SiO$_2$)와 같은 DEB 형태로 만들었을 때 $600^{\circ}C$의 온도에서 2.0 V이상 (<100 mA/㎤)의 안정한 전압이 5분 이상 유지되었다. 그러나 3층 전극 셀(Ca/LiCl/KCl/ CaCrO$_4$)에서는 동일한 온도에서 2.0 V이상 (<100 mA/㎤)의 전압이 7분 이상 유지되었으나 불안정한 전압 변동 및 낮은 peak voltage로 인해 DEB 셀의 전지 특성이 더 우수한 것으로 생각된다. 양극 재료의 제조 방법의 관점에서 볼 때, 동일한 DEB(Depolarizer : Electrolyte : Binder=25 : 70 : 5 wt%) 조성의 셀 구성시, GNP 분말은 분말 혼합법에 의한 분말보다 반응 표면적이 훨씬 크기 때문에 GNP 양극 활 물질의 DEB 셀에서의 전지 수명이 더 길었다.

  • PDF