1 |
Kontos, S., Fang, H.L., Li, J.H., Delczeg-Czirjak, E.K., Shafeie, S., Svedlindh, P., Sahlberg, M. and Gunnarsson, K. (2019), "Measured and calculated properties of B-doped τ-phase MnAl: A rare earth free permanent magnet", J. Magn. Magn. Mater., 474, 591-598. https://doi.org/10.1016/j.jmmm.2018.11.006
DOI
|
2 |
Kovacs, A., Fischbacher, J., Gusenbauer, M., Oezelt, H., Herper, H.C., Vekilova, O.Y., Nieves, P., Arapan, S. and Schref, T. (2020), "Computational design of rare-earth reduced permanent magnets", Engineering, 6, 148-153. https://doi.org/10.1016/j.eng.2019.11.006
DOI
|
3 |
Law, J.Y., Rial, J., Villanueva, M., Lopez, N., Camarero, J., Marshall, L.G., Blazquez, J.S., Borrego, J.M., Franco, V., Condec, A., Lewis, L.H. and Bolleroa, A. (2017), "Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles", J. Alloys Compounds, 712, 373-378. https://doi.org/10.1016/j.jallcom.2017.04.038
DOI
|
4 |
Lee, J.G., Pu, L., Choi, C.J. and Dong, X.L. (2010), "Synthesis of Mn-Al alloy nanoparticles by plasma arc discharge", Thin Solid Films, 519, 81-85. https://doi.org/10.1016/j.tsf.2010.07.063
DOI
|
5 |
Lee, J.G., Wang, X.L., Zhang, Z.D. and Choi, C.J. (2011), "Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn-Al alloy powders", Thin Solid Films, 519, 8312-8316. http://dx.doi.org/10.1016/j.tsf.2011.03.094
DOI
|
6 |
Li, D., Pan, D., Li, S. and Zhang, Z.D. (2016), "Recent developments of rare-earth-free hard-magnetic materials", Sci. China: Phys. Mech. Astron., 59, 617501. https://doi.org/10.1007/s11433-015-5760-x
DOI
|
7 |
Liu, Z.W., Chen, C., Zheng, Z.G., Tan, B.H. and Ramanujan, R.V. (2012), "Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements", J. Mater. Sci., 47, 2333-2338. https://doi.org/10.1007/s10853-011-6049-8
DOI
|
8 |
Zhao, S., Wu, Y.Y., Zhang, C., Wang, J.M., Fu, Z.H., Zhang, R.F. and Jiang, C.B. (2018), "Stabilization of τ-phase in carbon-doped MnAl magnetic alloys", J. Alloys Compd., 755, 257-264. https://doi.org/10.1016/j.jallcom.2018.04.318
DOI
|
9 |
Zhao, S., Wu, Y.Y., Wang, J.M., Jia, Y.X., Zhang, T.L., Zhang, T.L. and Jiang, C.B. (2019a), "Realization of large coercivity in MnAl permanent-magnet alloys by introducing nanoprecipitates", J. Magn. Magn. Mater., 483, 164-168. https://doi.org/10.1016/j.jmmm.2019.03.103
DOI
|
10 |
Zhao, S., Wu, Y.Y., Jiao, Z.Y., Jia, Y.X., Xu, Y.C., Wang, J.M., Zhang, T.L. and Jiang, C.B. (2019b), "Evolution of intrinsic magnetic properties in L1(0) Mn-Al alloys doped with substitutional atoms and correlated mechanism: Experimental and theoretical studies", Phys. Rev. Appl., 11, 064008. https://doi.org/10.1103/PhysRevApplied.11.064008
DOI
|
11 |
Tyrman, M., Ahmim, S., Pasko, A., Etgens, V., Mazaleyrat, F., Quetel-Weben, S., Perriere, L. and Guillot, I. (2018), "Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering", AIP Adv., 8, 056217. https://doi.org/10.1063/1.5007241
DOI
|
12 |
Su, K.P., Hu, S.L., Wang, H.O., Huang, S., Chen, X.X., Liu, J.J., Huo, D.X., Ma, L. and Liu, Z.W. (2019), "Structural and magnetic properties of Mn50Al46Cu4C3 flakes obtained by surfactant-assisted ball milling", Mater. Res. Exp., 6, 106125. https://doi.org/10.1088/2053-1591/ab4227
DOI
|
13 |
Thielsch, J., Bittner, F. and Woodcock, T.G. (2017), "Magnetization reversal processes in hot-extruded τ-MnAl-C", J. Magn. Magn. Mater., 426, 25-31. https://doi.org/10.1016/j.jmmm.2016.11.045
DOI
|
14 |
Tyrman, M., Pasko, A., Perriere, L., Etgens, V., Isnard, O. and Mazaleyrat, F. (2017), "Effect of carbon addition on magnetic order in Mn-Al-C alloys", IEEE Trans. Magn., 53, 2101406. https://doi.org/10.1109/TMAG.2017.2710639
DOI
|
15 |
Kono, H. (1958), "On the ferromagnetic phase in manganese-aluminum system", J. Phys. Soc. Japan, 13, 1444-1451. https://doi.org/10.1143/JPSJ.13.1444
DOI
|
16 |
Liu, Z.W., Su, K.P., Cheng, Y.T. and Ramanujan, R.V. (2015), "Structure and properties evolutions for hard magnetic MnAl and MnGa based alloys prepared by melt spinning or mechanical milling", Mater. Sci. Eng. Adv. Res., 1(1), 12-19. https://doi.org/10.24218/msear.2015.03
DOI
|
17 |
Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Mi, Z., Zhang, W., Tian, W. and Yan, Y. (2016a), "Phase transformation kinetics and microstructural evolution of MnAl permanent magnet alloys", J. Alloys Compounds, 685, 992-996. http://dx.doi.org/10.1016/j.jallcom.2016.06.285
DOI
|
18 |
Kobayashi, R., Mitsui, Y., Umetsu, R.Y., Takahashi, K., Mizuguchi, M. and Koyama, K. (2019), "Magneticfield-induced enhancement of phase transformation in ferromagnetic τ-Mn-Al", J. Japan Inst. Met. Mater. 83, 181-185. https://doi.org/10.2320/jinstmet.J2018057
DOI
|
19 |
Bance, S., Bittner, F., Woodcock, T.G., Schultz, L. and Schrefl, T. (2017), "Role of twin and anti-phase defects in MnAl permanent magnets", Acta Mater., 131, 48-56. https://doi.org/10.1016/j.actamat.2017.04.004
DOI
|
20 |
Bittner, F., Freudenberger, J., Schultz, L. and Woodcock, T.G. (2017a), "The impact of dislocations on coercivity in L10-MnAl", J. Alloys Compd., 704, 528-536. https://doi.org/10.1016/j.jallcom.2017.02.028
DOI
|
21 |
Xiang, Z., Deng, B.W., Zhang, X., Wang, X., Cui, E.B., Yu, L.Z., Song, Y.M. and Lu, W. (2020), "Nanocrystalline MnAlV rare-earth-free permanent magnetic alloys with improved magnetization and thermal stability", Intermetallics, 116, 106638. https://doi.org/10.1016/j.intermet.2019.106638
DOI
|
22 |
Wang, H.X., Si, P.Z., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., Wu, Q., Zhong, M. and Ge, H.L. (2011), "Structural stabilizing effect of Zn substitution on MnAl and its magnetic properties", Open J. Microphys., 1, 19-22. https://doi.org/10.4236/ojm.2011.12003
DOI
|
23 |
Wei, J.Z., Song, Z.G., Yang, Y.B., Liu, S.Q., Du, H.L., Han, J.Z., Zhou, D., Wang, C.S., Yang, Y.C., Franz, A., Tobbens, D. and Yang, J.B. (2014), "τ-MnAl with high coercivity and saturation magnetization", AIP Adv., 4, 127113. https://doi.org/10.1063/1.4903773
DOI
|
24 |
Xiang, Z., Wang, X., Song, Y.M., Yu, L.Z., Cui, E.B., Den, B.W., Batalu, D. and Lu, W. (2018a), "Effect of cooling rates on the microstructure and magnetic properties of MnAl permanent magnetic alloys", J. Magn. Magn. Mater., 475, 479-483. https://doi.org/10.1016/j.jmmm.2018.12.003
DOI
|
25 |
Bittner, F., Schultz, L. and Woodcock, T.G. (2017b), "The role of the interface distribution in the decomposition of metastable L10-Mn54Al46", J. Alloys Compd., 727, 1095-1099. https://doi.org/10.1016/j.jallcom.2017.08.197
DOI
|
26 |
Charoensuk, T., Saetang, P., Ruttanapun, C., Phrompet, C., Pinitsoontorn, S. and Sirisathitkul, C. (2020), "Ferromagnetism of manganese-aluminium alloyed with 0-3% carbon from direct induction melting and subsequent annealing", Rom. Rep. Phys., 72, 507.
|
27 |
Xiang, Z., Xu, C.F., Wang, T.L., Song, Y.M., Yanga, H.W. and Lu, W. (2018b), "Enhanced magnetization and energy product in isotropic nanocrystalline Mn55Al45 alloys with boron doping", Intermetallics, 101, 13-17. https://doi.org/10.1016/j.intermet.2018.07.003
DOI
|
28 |
Xiang, Z., Song, Y.M., Deng, B.W., Cui, E.B., Yu, L.Z. and Lu, W. (2019), "Enhanced formation and improved thermal stability of ferromagnetic τ phase in nanocrystalline Mn55Al45 alloys by Co addition", J. Alloys Compd., 783, 416-422. https://doi.org/10.1016/j.jallcom.2018.12.350
DOI
|
29 |
Yang, Y.C., Ho, W.W., Lin, C., Yang, J.L., Zhou, H.M., Zhu, J., Zeng, X.X., Zhang, B.S. and Jin, L. (1984), "Neutron diffraction study of hard magnetic alloy MnAlC", J. Appl. Phys., 55, 2053-2054. https://doi.org/10.1063/1.333563
DOI
|
30 |
Chaturvedi, A., Yaqub, R. and Baker, I. (2014a), "A comparison of τ-MnAl particulates produced via different routes", J. Phys.: Condens. Matter., 26, 064201. https://doi.org/10.1088/0953-8984/26/6/064201
DOI
|
31 |
Chaturvedi, A., Yaqub, R. and Baker, I. (2014b), "Microstructure and magnetic properties of bulk nanocrystalline MnAl", Metals, 4, 20-27. https://doi:10.3390/met4010020
DOI
|
32 |
Crisan, A.D., Vasiliu, F., Nicula, R., Bartha, C., Mercioniu, I. and Crisan, O. (2018), "Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys", Mater. Charact., 140, 1-8. https://doi.org/10.1016/j.matchar.2018.03.034
DOI
|
33 |
Anand, K., Pulikkotil, J.J. and Auluck, S. (2014), "Study of ferromagnetic instability in τ-MnAl, using firstprinciples", J. Alloys Compd., 601, 234-237. http://dx.doi.org/10.1016/j.jallcom.2014.01.251
DOI
|
34 |
Fang, H., Kontos, S., A ngstrom, J., Cedervall, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2016), "Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets", J. Solid State Chem., 237, 300-306. https://doi.org/10.1016/j.jssc.2016.02.031
DOI
|
35 |
Yang, J.B., Yang, W.Y., Shao, Z.Y., Liang, D., Zhao, H., Xia, Y.H. and Yang, Y.B. (2018), "Mn-based permanent magnets", Chin. Phys. B, 27, 117503. https://doi.org/10.1088/1674-1056/27/11/117503
DOI
|
36 |
Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2017), "MWCNT reinforced τ-Mn-Al nanocomposite magnets through spark plasma sintering", J. Alloys Compounds, 695, 364-371. https://doi.org/10.1016/j.jallcom.2016.10.184
DOI
|
37 |
Sato, S. and Irie, S. (2019), "Matamagnetic behavior in L10-MnAl synthesized by the post annealing of electrodeposited MnAl powder", AIP Adv., 9, 035015. https://doi.org/10.1063/1.5079929
DOI
|
38 |
Arapan, S., Nieves, P., Cuesta-Lopez, S., Gusenbauer, M., Oezelt, H., Schrefl, T., Delczeg-Czirjak, E.K., Herper, H.C. and Eriksson, O. (2019), "Influence of antiphase boundary of the MnAl τ-phase on the energy product", Phys. Rev. Mater., 3, 064412. https://doi.org/10.1103/PhysRevMaterials.3.064412
DOI
|
39 |
Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., Balasubramanian, B. and Sellmyer, D. (2018), "Current progress and future challenges in rare-earth-free permanent magnets", Acta Mater., 158, 118-137. https://doi.org/10.1016/j.actamat.2018.07.049
DOI
|
40 |
Sato, S., Irie, S., Nagamine, Y., Miyazaki, T. and Umeda, Y. (2020), "Antiferromagnetism in perfectly ordered-L10-MnAl with stoichiometric composition and its mechanism", Sci. Rep., 10, 12489. https://doi.org/10.1038/s41598-020-69538-2
DOI
|
41 |
Shafeie, S., Fang, H.L., Hedlund, D., Nyberg, A., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2019), "One step towards MnAl-based permanent magnets: Differences in magnetic, and microstructural properties from an intermediate annealing step during synthesis", J. Solid State Chem., 274, 229-236. https://doi.org/10.1016/j.jssc.2019.03.035
DOI
|
42 |
Shao, Z.Y., Zhao, H., Zeng, J.L., Zhang, Y.F., Yang, W.Y., Lai, Y.F., Guo, S., Du, H.L., Wang, C.S., Yang, Y.C. and Yang, J.B. (2017), "One step preparation of pure τ-MnAl phase with high magnetization using strip casting method", AIP Adv., 7, 056213. https://doi.org/10.1063/1.4974277
DOI
|
43 |
Shukla, A. and Pelton, A.D. (2009), "Thermodynamic assessment of the Al-Mn and Mg-Al-Mn systems", J. Phase Equilib. Diff., 30, 28-39. https://doi.org/10.1007/s11669-008-9426-5
DOI
|
44 |
Si, P.Z., Qian, H.D., Choi, C.J., Park, J., Han, S., Ge, H.L. and Shinde, K.P. (2017), "in situ observation of phase transformation in MnAl(C) magnetic materials", Materials, 10, 1016. https://doi.org/10.3390/ma10091016
DOI
|
45 |
Geng, Y., Lucis, M.J., Rasmussen, P. and Shield, J.E. (2015), "Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr", J. Appl. Phys., 118, 033905. https://doi.org/10.1063/1.4927289
DOI
|
46 |
Fang, H., Cedervall, J., Casado, F.J.M., Matej, Z., Bednarcik, J., A ngstrom, J., Berastegui, P. and Sahlberg, M. (2017), "Insights into formation and stability of τ-MnAlZx (Z ¼ C and B)", J. Alloys Compd., 692, 198-203. http://dx.doi.org/10.1016/j.jallcom.2016.09.047
DOI
|
47 |
Fang, H., Cedervall, J., Hedlund, D., Shafeie, S., Deledda, S., Olsson, F., Fieandt, L.V., Bednarcik, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2018), "Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl", Sci. Rep., 8, 2525. https://doi.org/10.1038/s41598-018-20606-8
DOI
|
48 |
Gabay, A.M. and Hadjipanayis, G.C. (2015), "Application of mechanochemical synthesis to manufacturing of permanent magnets", JOM, 67, 1329-1335. https://doi.org/10.1007/s11837-015-1426-4
DOI
|
49 |
Si, P.Z., Park, J., Qian, H.D., Choi, C.J., Li, Y.S. and Ge, H. (2019a), "Enhanced magnetic performance of bulk nanocrystalline MnAl-C prepared by high pressure compaction of gas atomized powder", Bull. Mater. Sci., 42, 95. https://doi.org/10.1007/s12034-019-1768-6
DOI
|
50 |
Genc, A.M., Acar, O., Turan, S., Kalay, I., Savaci, U. and Kalay, Y.E. (2019), "Investigation of phase selection hierarchy in Mn-Al alloys", Intermetallics, 115, 106617. https://doi.org/10.1016/j.intermet.2019.106617
DOI
|
51 |
Han, K.H., Lee, C.T. and Choo, W.K. (1993), "On the position of carbon atom in the τ‐phase of carbon‐doped Mn‐Al permanent magnets", Phys. Stat. Solidi A, 136, 21-28. https://doi.org/10.1002/pssa.2211360103
DOI
|
52 |
Hirosawa, S., Nishino, M. and Miyashita, S. (2017), "Perspectives for high-performance permanent magnets: Applications, coercivity, and new materials", Adv. Nat. Sci: Nanosci. Nanotechnol., 8, 013002. https://doi.org/10.1088/2043-6254/aa597c
DOI
|
53 |
Jian, H., Skokov, K.P. and Gutfleisch, O. (2015), "Microstructure and magnetic properties of Mn-Al-C alloy powders prepared by ball milling", J. Alloys Compounds, 622, 524-528. https://doi.org/10.1016/j.jallcom.2014.10.138
DOI
|
54 |
Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Zigo, J., Mihalkovic, M., Marcin, J. and Skorvanek, I. (2017), "Phase analysis and structure of rapidly quenched Al-Mn systems", J. Alloys Compounds, 707, 137-141. https://doi.org/10.1016/j.jallcom.2016.11.171
DOI
|
55 |
Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Kunca, B., Marcin, J. and Skorvanek, I. (2018), "Formation of magnetic phases in rapidly quenched Mn-Based systems", J. Alloys Compounds, 749, 128-133. https://doi.org/10.1016/j.jallcom.2018.03.208
DOI
|
56 |
Jia, Y.X., Wu, Y.Y., Zhao, S., Wang, J.M. and Jiang, C.B. (2018), "Relation between solidification microstructure and coercivity in MnAl permanent-magnet alloys", Intermetallics, 96, 41-48. https://doi.org/10.1016/j.intermet.2018.02.011
DOI
|
57 |
Jimenez-Villacorta, F., Marion, J.L., Oldham, J.T., Daniil, M., Willard, M.A. and Lewis, L.H. (2014), "Magnetism-structure correlations during the ε→τ transformation in rapidly-solidified MnAl nanostructured alloys", Metals, 4, 8-19. https://doi.org/10.3390/met4010008
DOI
|
58 |
Kinemuchi, Y., Fujita, A. and Ozaki, K. (2016), "High-pressure synthesis of L10 MnAl with nearstoichiometric composition", Dalton Trans., 45, 10936. https://doi.org/10.1039/c6dt00947f
DOI
|
59 |
Si, P.Z., Lim, J.T., Park, J.H., Lee, H.H., Ge, H.L., Lee, H., Han, S., Kim, H.S. and Choi, C.J. (2020a), "High coercivity in MnAl disc prepared by severe plastic deformation", Phys. Stat. Solidi B, 257, 1900356. https://doi.org/10.1002/pssb.201900356
DOI
|
60 |
Si, P.Z., Qian, H.D., Wang, X.Y., Yang Y., Park, J.H., Ge, H.L. and Choi, C.J. (2019b), "High-pressure synthesis of high coercivity bulk MnAl-C magnets from melt-spun ribbons", J. Electron. Mater., 42, 794-798. https://doi.org/10.1007/s11664-018-6798-0
DOI
|
61 |
Si, P.Z., Choi, C.J., Park, J., Ge, H.L. and Du, J. (2020b), "Phase transformation and enhanced coercivity in B-N-doped MnAl nanocrystalline bulk alloys prepared by high pressure torsion", AIP Adv., 10, 015320. https://doi.org/10.1063/1.5130064
DOI
|
62 |
Su, K.P., Wang, J., Wang, H.O., Huo, D.X., Li, L.W., Cao, Y.Q. and Liu, Z.W. (2015), "Strain induced coercivity enhancement in Mn51Al46C3 flakes prepared by surfactant-assisted ball milling", J. Alloys Compd., 640, 114-117. https://doi.org/10.1016/j.jallcom.2015.04.040
DOI
|
63 |
Park, J.H., Hong, Y.K., Bae, S., Lee, J.J., Jalli, J., Abo, G.S., Neveu, N., Kim, S.G., Choi, C.J. and Lee, J.G. (2010), "Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet", J. Appl. Phys., 107, 09A731. https://doi.org/10.1063/1.3337640
DOI
|
64 |
Pasko, A., Lobue, M., Fazakas, E. Varga, L.K. and Mazaleyrat, F. (2014), "Spark plasma sintering of Mn-AlC hard magnets", J. Phys.: Condensed Matter, 26(6), 064203. https://doi.org/10.1088/0953-8984/26/6/064203
DOI
|
65 |
Radulov, I.A., Popov, V.V.Jr., Koptyug, A., Maccari, F., Kovalevsky, A., Essel, S., Gassmann, J., Skokov, K.P. and Bamberger, M. (2019), "Production of net-shape Mn-Al permanent magnets by electron beam melting", Addit. Manuf., 30, 100787. https://doi.org/10.1016/j.addma.2019.100787
DOI
|
66 |
Patel, K., Zhang, J.M. and Ren, S.Q. (2018), "Rare-earth-free high energy product manganese-based magnetic materials", Nanoscale, 10, 11701-11718. https://doi.org/10.1039/C8NR01847B
DOI
|
67 |
Poudyal, N. and Liu, J.P. (2013), "Advance in nanostructured permanent magnets research", J. Phys. D: Appl. Phys., 46, 043001. https://doi.org/10.1088/0022-3727/46/4/043001
DOI
|
68 |
Qian, H.D., Si, P.Z., Choi, C.J., Park, J. and Cho, K.M. (2018a), "Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling", AIP Adv., 8, 056216. https://doi.org/10.1063/1.5007176
DOI
|
69 |
Qian, H.D., Si, P.Z., Lim, J.T., Kim, J.W., Park, J.H. and Choi, C.J. (2018b), "Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites", J. Korean Phys. Soc., 73, 1703-1707. https://doi.org/10.3938/jkps.73.1703
DOI
|
70 |
Qian, H.D., Si, P.Z., Park, J., Cho, K.M. and Choi, C.J. (2019), "Structure and magnetic properties of nanocrystalline MnAl-C prepared by solid-state reaction and high-pressure compaction", J. Electron. Mater., 48, 1395-1399. https://doi.org/10.1007/s11664-018-06848-2
DOI
|
71 |
Rial, J., Villanueva, M., Cespedes, E., Lopez, N., Camarero, J., Marshall, L.G., Lewis, L.H. and Bollero, A. (2017), "Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders", J. Phys. D: Appl. Phys., 50, 105004. https://doi.org/10.1088/1361-6463/aa57a1
DOI
|
72 |
Manchanda, P., Kashyap, A., Shield, J.E., Lewis, L.H. and Skomski, R. (2014), "Magnetic properties of Fedoped MnAl", J. Magn. Magn. Mater., 365, 88-92. https://doi.org/10.1016/j.jmmm.2014.04.007
DOI
|
73 |
Saetang, P., Charoensuk, T., Boonyang, U., Jantaratana, P. and Sirisathitkul, C. (2020), "Phase transformations in Mn-Al and Mn-Bi magnets by repeated heat treatment", Trans. Ind. Inst. Met., 73, 929-936. https://doi.org/10.1007/s12666-020-01912-0
DOI
|
74 |
Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2015a), "Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling", Appl. Phys. Lett., 107, 192407. https://doi.org/10.1063/1.4935861
DOI
|
75 |
Saravanan, P., Vinod, V.T.P., Cernik, M., Selvapriya, A., Chakravarty, D. and Kamat, S.V. (2015b), "Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing", J. Magn. Magn. Mater., 374, 427-432. https://doi.org/10.1016/j.jmmm.2014.08.076
DOI
|
76 |
Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Zhang, H., Yoshimura, S. and Saito, H. (2016b), "Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization", J. Alloys Compounds, 675, 163-167. http://dx.doi.org/10.1016/j.jallcom.2016.03.098
DOI
|
77 |
Madugundo, R., Koylu-Alkan, O. and Hadjipanayis, G.C. (2016), "Bulk Mn-Al-C permanent magnets prepared by various techniques", AIP Adv., 6, 056009. https://doi.org/10.1063/1.4943242
DOI
|
78 |
Marshall, L.G., McDonald, I.J. and Lewis, L.H. (2016), "Quantification of the strain induced promotion of τMnAl via cryogenic milling", J. Magn. Magn. Mater., 404, 215-220. https://doi.org/10.1016/j.jmmm.2015.12.006
DOI
|
79 |
Mitsui, Y., Takanaga, Y., Kobayashi, R. and Koyama, K. (2020), "Effect of carbon addition on the phase stability of hcp-Mn-Al", Phys. B: Cond. Matter, 595, 412379. https://doi.org/10.1016/j.physb.2020.412379
DOI
|
80 |
Mix, T., Bittner, F., Müller, K.-H., Schultz, L. and Woodcock, T.G. (2017), "Alloying with a few atomic percent of Ga makes MnAl thermodynamically stable", Acta Mater., 128, 160-165. https://doi.org/10.1016/j.actamat.2017.02.011
DOI
|
81 |
Nguyen, V.T., Calvayrac, F., Bajorek, A. and Randrianantoandro, N. (2018), "Mechanical alloying and theoretical studies of MnAl(C) magnets", J. Magn. Magn. Mater., 462(15), 96-104. https://doi.org/10.1016/j.jmmm.2018.05.001
DOI
|
82 |
Obi, O., Burns, L., Chen, Y., Fitchorov, T., Kim, S., Hsu, K., Heiman, D., Lewis, L.H. and Harris, V.G. (2014), "Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders", J. Alloys Compounds, 582, 598-602. https://doi.org/10.1016/j.jallcom.2013.08.086
DOI
|
83 |
Ohtani, T., Kato, N., Kojima, S., Kojima, K., Sakamoto, Y., Konno, I., Tsukahara, M. and Kubo, T. (1977), "Magnetic properties of Mn-Al-C permanent magnet alloys", IEEE Trans. Magn., 13(5), 1328-1330. https://doi.org/10.1109/TMAG.1977.1059574
DOI
|
84 |
Palanisamy, D., Srivastava, C., Madras, G. and Chattopadhyay, K. (2017), "High-temperature transformation pathways for metastable ferromagnetic binary Heusler (Al-55 at.%Mn) alloy", J. Mater. Sci., 52, 4109-4119. https://doi.org/10.1007/s10853-016-0673-2
DOI
|
85 |
Palanisamy, D., Raabe, D. and Gault, B. (2019), "On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy", Acta Mater., 174, 227-236. https://doi.org/10.1016/j.actamat.2019.05.037
DOI
|
86 |
Palmero, E.M., Rial, J., de Vicente, J., Camarero, J., Skarman, B., Vidarsson, H., Larsson, P.O. and Bollero, A. (2018), "Development of permanent magnet MnAlC/ polymer composites and flexible filament for bonding and 3D-printing technologies", Sci. Technol. Adv. Mater., 19, 465-473. https://doi.org/10.1080/14686996.2018.1471321
DOI
|