Browse > Article
http://dx.doi.org/10.12989/amr.2020.9.4.323

Recent developments of manganese-aluminium as rare-earth-free magnets  

Sirisathitkul, Chitnarong (Division of Physics, School of Science, Walailak University)
Publication Information
Advances in materials Research / v.9, no.4, 2020 , pp. 323-335 More about this Journal
Abstract
This article reviews findings and progresses in the past decade on manganese-aluminium (MnAl) based magnets as the interest has been revived to fulfill their potential as commercial magnets. The challenges in developments of these rare-earth-free magnets are to acquire a high remanence and coercivity from the ferromagnetic τ-phase in MnAl alloys. To this end, the phase transformation to this τ-MnAl with L10 body centered tetragonal structure has been promoted by a variety of methods and a few percents of carbon (C) is often added to prevent the phase decomposition. Magnetization and coercivity are not only influenced by the phase composition but also the microstructure. The fabrication processes and factors affecting the phase and microstructure are therefore covered. Finally, the productions of bulk MnAl magnets are addressed.
Keywords
rare-earth-free magnet; manganese-aluminium; ferromagnetic phase; coercivity; magnetization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kontos, S., Fang, H.L., Li, J.H., Delczeg-Czirjak, E.K., Shafeie, S., Svedlindh, P., Sahlberg, M. and Gunnarsson, K. (2019), "Measured and calculated properties of B-doped τ-phase MnAl: A rare earth free permanent magnet", J. Magn. Magn. Mater., 474, 591-598. https://doi.org/10.1016/j.jmmm.2018.11.006   DOI
2 Kovacs, A., Fischbacher, J., Gusenbauer, M., Oezelt, H., Herper, H.C., Vekilova, O.Y., Nieves, P., Arapan, S. and Schref, T. (2020), "Computational design of rare-earth reduced permanent magnets", Engineering, 6, 148-153. https://doi.org/10.1016/j.eng.2019.11.006   DOI
3 Law, J.Y., Rial, J., Villanueva, M., Lopez, N., Camarero, J., Marshall, L.G., Blazquez, J.S., Borrego, J.M., Franco, V., Condec, A., Lewis, L.H. and Bolleroa, A. (2017), "Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles", J. Alloys Compounds, 712, 373-378. https://doi.org/10.1016/j.jallcom.2017.04.038   DOI
4 Lee, J.G., Pu, L., Choi, C.J. and Dong, X.L. (2010), "Synthesis of Mn-Al alloy nanoparticles by plasma arc discharge", Thin Solid Films, 519, 81-85. https://doi.org/10.1016/j.tsf.2010.07.063   DOI
5 Lee, J.G., Wang, X.L., Zhang, Z.D. and Choi, C.J. (2011), "Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn-Al alloy powders", Thin Solid Films, 519, 8312-8316. http://dx.doi.org/10.1016/j.tsf.2011.03.094   DOI
6 Li, D., Pan, D., Li, S. and Zhang, Z.D. (2016), "Recent developments of rare-earth-free hard-magnetic materials", Sci. China: Phys. Mech. Astron., 59, 617501. https://doi.org/10.1007/s11433-015-5760-x   DOI
7 Liu, Z.W., Chen, C., Zheng, Z.G., Tan, B.H. and Ramanujan, R.V. (2012), "Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements", J. Mater. Sci., 47, 2333-2338. https://doi.org/10.1007/s10853-011-6049-8   DOI
8 Zhao, S., Wu, Y.Y., Zhang, C., Wang, J.M., Fu, Z.H., Zhang, R.F. and Jiang, C.B. (2018), "Stabilization of τ-phase in carbon-doped MnAl magnetic alloys", J. Alloys Compd., 755, 257-264. https://doi.org/10.1016/j.jallcom.2018.04.318   DOI
9 Zhao, S., Wu, Y.Y., Wang, J.M., Jia, Y.X., Zhang, T.L., Zhang, T.L. and Jiang, C.B. (2019a), "Realization of large coercivity in MnAl permanent-magnet alloys by introducing nanoprecipitates", J. Magn. Magn. Mater., 483, 164-168. https://doi.org/10.1016/j.jmmm.2019.03.103   DOI
10 Zhao, S., Wu, Y.Y., Jiao, Z.Y., Jia, Y.X., Xu, Y.C., Wang, J.M., Zhang, T.L. and Jiang, C.B. (2019b), "Evolution of intrinsic magnetic properties in L1(0) Mn-Al alloys doped with substitutional atoms and correlated mechanism: Experimental and theoretical studies", Phys. Rev. Appl., 11, 064008. https://doi.org/10.1103/PhysRevApplied.11.064008   DOI
11 Tyrman, M., Ahmim, S., Pasko, A., Etgens, V., Mazaleyrat, F., Quetel-Weben, S., Perriere, L. and Guillot, I. (2018), "Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering", AIP Adv., 8, 056217. https://doi.org/10.1063/1.5007241   DOI
12 Su, K.P., Hu, S.L., Wang, H.O., Huang, S., Chen, X.X., Liu, J.J., Huo, D.X., Ma, L. and Liu, Z.W. (2019), "Structural and magnetic properties of Mn50Al46Cu4C3 flakes obtained by surfactant-assisted ball milling", Mater. Res. Exp., 6, 106125. https://doi.org/10.1088/2053-1591/ab4227   DOI
13 Thielsch, J., Bittner, F. and Woodcock, T.G. (2017), "Magnetization reversal processes in hot-extruded τ-MnAl-C", J. Magn. Magn. Mater., 426, 25-31. https://doi.org/10.1016/j.jmmm.2016.11.045   DOI
14 Tyrman, M., Pasko, A., Perriere, L., Etgens, V., Isnard, O. and Mazaleyrat, F. (2017), "Effect of carbon addition on magnetic order in Mn-Al-C alloys", IEEE Trans. Magn., 53, 2101406. https://doi.org/10.1109/TMAG.2017.2710639   DOI
15 Kono, H. (1958), "On the ferromagnetic phase in manganese-aluminum system", J. Phys. Soc. Japan, 13, 1444-1451. https://doi.org/10.1143/JPSJ.13.1444   DOI
16 Liu, Z.W., Su, K.P., Cheng, Y.T. and Ramanujan, R.V. (2015), "Structure and properties evolutions for hard magnetic MnAl and MnGa based alloys prepared by melt spinning or mechanical milling", Mater. Sci. Eng. Adv. Res., 1(1), 12-19. https://doi.org/10.24218/msear.2015.03   DOI
17 Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Mi, Z., Zhang, W., Tian, W. and Yan, Y. (2016a), "Phase transformation kinetics and microstructural evolution of MnAl permanent magnet alloys", J. Alloys Compounds, 685, 992-996. http://dx.doi.org/10.1016/j.jallcom.2016.06.285   DOI
18 Kobayashi, R., Mitsui, Y., Umetsu, R.Y., Takahashi, K., Mizuguchi, M. and Koyama, K. (2019), "Magneticfield-induced enhancement of phase transformation in ferromagnetic τ-Mn-Al", J. Japan Inst. Met. Mater. 83, 181-185. https://doi.org/10.2320/jinstmet.J2018057   DOI
19 Bance, S., Bittner, F., Woodcock, T.G., Schultz, L. and Schrefl, T. (2017), "Role of twin and anti-phase defects in MnAl permanent magnets", Acta Mater., 131, 48-56. https://doi.org/10.1016/j.actamat.2017.04.004   DOI
20 Bittner, F., Freudenberger, J., Schultz, L. and Woodcock, T.G. (2017a), "The impact of dislocations on coercivity in L10-MnAl", J. Alloys Compd., 704, 528-536. https://doi.org/10.1016/j.jallcom.2017.02.028   DOI
21 Xiang, Z., Deng, B.W., Zhang, X., Wang, X., Cui, E.B., Yu, L.Z., Song, Y.M. and Lu, W. (2020), "Nanocrystalline MnAlV rare-earth-free permanent magnetic alloys with improved magnetization and thermal stability", Intermetallics, 116, 106638. https://doi.org/10.1016/j.intermet.2019.106638   DOI
22 Wang, H.X., Si, P.Z., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., Wu, Q., Zhong, M. and Ge, H.L. (2011), "Structural stabilizing effect of Zn substitution on MnAl and its magnetic properties", Open J. Microphys., 1, 19-22. https://doi.org/10.4236/ojm.2011.12003   DOI
23 Wei, J.Z., Song, Z.G., Yang, Y.B., Liu, S.Q., Du, H.L., Han, J.Z., Zhou, D., Wang, C.S., Yang, Y.C., Franz, A., Tobbens, D. and Yang, J.B. (2014), "τ-MnAl with high coercivity and saturation magnetization", AIP Adv., 4, 127113. https://doi.org/10.1063/1.4903773   DOI
24 Xiang, Z., Wang, X., Song, Y.M., Yu, L.Z., Cui, E.B., Den, B.W., Batalu, D. and Lu, W. (2018a), "Effect of cooling rates on the microstructure and magnetic properties of MnAl permanent magnetic alloys", J. Magn. Magn. Mater., 475, 479-483. https://doi.org/10.1016/j.jmmm.2018.12.003   DOI
25 Bittner, F., Schultz, L. and Woodcock, T.G. (2017b), "The role of the interface distribution in the decomposition of metastable L10-Mn54Al46", J. Alloys Compd., 727, 1095-1099. https://doi.org/10.1016/j.jallcom.2017.08.197   DOI
26 Charoensuk, T., Saetang, P., Ruttanapun, C., Phrompet, C., Pinitsoontorn, S. and Sirisathitkul, C. (2020), "Ferromagnetism of manganese-aluminium alloyed with 0-3% carbon from direct induction melting and subsequent annealing", Rom. Rep. Phys., 72, 507.
27 Xiang, Z., Xu, C.F., Wang, T.L., Song, Y.M., Yanga, H.W. and Lu, W. (2018b), "Enhanced magnetization and energy product in isotropic nanocrystalline Mn55Al45 alloys with boron doping", Intermetallics, 101, 13-17. https://doi.org/10.1016/j.intermet.2018.07.003   DOI
28 Xiang, Z., Song, Y.M., Deng, B.W., Cui, E.B., Yu, L.Z. and Lu, W. (2019), "Enhanced formation and improved thermal stability of ferromagnetic τ phase in nanocrystalline Mn55Al45 alloys by Co addition", J. Alloys Compd., 783, 416-422. https://doi.org/10.1016/j.jallcom.2018.12.350   DOI
29 Yang, Y.C., Ho, W.W., Lin, C., Yang, J.L., Zhou, H.M., Zhu, J., Zeng, X.X., Zhang, B.S. and Jin, L. (1984), "Neutron diffraction study of hard magnetic alloy MnAlC", J. Appl. Phys., 55, 2053-2054. https://doi.org/10.1063/1.333563   DOI
30 Chaturvedi, A., Yaqub, R. and Baker, I. (2014a), "A comparison of τ-MnAl particulates produced via different routes", J. Phys.: Condens. Matter., 26, 064201. https://doi.org/10.1088/0953-8984/26/6/064201   DOI
31 Chaturvedi, A., Yaqub, R. and Baker, I. (2014b), "Microstructure and magnetic properties of bulk nanocrystalline MnAl", Metals, 4, 20-27. https://doi:10.3390/met4010020   DOI
32 Crisan, A.D., Vasiliu, F., Nicula, R., Bartha, C., Mercioniu, I. and Crisan, O. (2018), "Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys", Mater. Charact., 140, 1-8. https://doi.org/10.1016/j.matchar.2018.03.034   DOI
33 Anand, K., Pulikkotil, J.J. and Auluck, S. (2014), "Study of ferromagnetic instability in τ-MnAl, using firstprinciples", J. Alloys Compd., 601, 234-237. http://dx.doi.org/10.1016/j.jallcom.2014.01.251   DOI
34 Fang, H., Kontos, S., A ngstrom, J., Cedervall, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2016), "Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets", J. Solid State Chem., 237, 300-306. https://doi.org/10.1016/j.jssc.2016.02.031   DOI
35 Yang, J.B., Yang, W.Y., Shao, Z.Y., Liang, D., Zhao, H., Xia, Y.H. and Yang, Y.B. (2018), "Mn-based permanent magnets", Chin. Phys. B, 27, 117503. https://doi.org/10.1088/1674-1056/27/11/117503   DOI
36 Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2017), "MWCNT reinforced τ-Mn-Al nanocomposite magnets through spark plasma sintering", J. Alloys Compounds, 695, 364-371. https://doi.org/10.1016/j.jallcom.2016.10.184   DOI
37 Sato, S. and Irie, S. (2019), "Matamagnetic behavior in L10-MnAl synthesized by the post annealing of electrodeposited MnAl powder", AIP Adv., 9, 035015. https://doi.org/10.1063/1.5079929   DOI
38 Arapan, S., Nieves, P., Cuesta-Lopez, S., Gusenbauer, M., Oezelt, H., Schrefl, T., Delczeg-Czirjak, E.K., Herper, H.C. and Eriksson, O. (2019), "Influence of antiphase boundary of the MnAl τ-phase on the energy product", Phys. Rev. Mater., 3, 064412. https://doi.org/10.1103/PhysRevMaterials.3.064412   DOI
39 Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., Balasubramanian, B. and Sellmyer, D. (2018), "Current progress and future challenges in rare-earth-free permanent magnets", Acta Mater., 158, 118-137. https://doi.org/10.1016/j.actamat.2018.07.049   DOI
40 Sato, S., Irie, S., Nagamine, Y., Miyazaki, T. and Umeda, Y. (2020), "Antiferromagnetism in perfectly ordered-L10-MnAl with stoichiometric composition and its mechanism", Sci. Rep., 10, 12489. https://doi.org/10.1038/s41598-020-69538-2   DOI
41 Shafeie, S., Fang, H.L., Hedlund, D., Nyberg, A., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2019), "One step towards MnAl-based permanent magnets: Differences in magnetic, and microstructural properties from an intermediate annealing step during synthesis", J. Solid State Chem., 274, 229-236. https://doi.org/10.1016/j.jssc.2019.03.035   DOI
42 Shao, Z.Y., Zhao, H., Zeng, J.L., Zhang, Y.F., Yang, W.Y., Lai, Y.F., Guo, S., Du, H.L., Wang, C.S., Yang, Y.C. and Yang, J.B. (2017), "One step preparation of pure τ-MnAl phase with high magnetization using strip casting method", AIP Adv., 7, 056213. https://doi.org/10.1063/1.4974277   DOI
43 Shukla, A. and Pelton, A.D. (2009), "Thermodynamic assessment of the Al-Mn and Mg-Al-Mn systems", J. Phase Equilib. Diff., 30, 28-39. https://doi.org/10.1007/s11669-008-9426-5   DOI
44 Si, P.Z., Qian, H.D., Choi, C.J., Park, J., Han, S., Ge, H.L. and Shinde, K.P. (2017), "in situ observation of phase transformation in MnAl(C) magnetic materials", Materials, 10, 1016. https://doi.org/10.3390/ma10091016   DOI
45 Geng, Y., Lucis, M.J., Rasmussen, P. and Shield, J.E. (2015), "Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr", J. Appl. Phys., 118, 033905. https://doi.org/10.1063/1.4927289   DOI
46 Fang, H., Cedervall, J., Casado, F.J.M., Matej, Z., Bednarcik, J., A ngstrom, J., Berastegui, P. and Sahlberg, M. (2017), "Insights into formation and stability of τ-MnAlZx (Z ¼ C and B)", J. Alloys Compd., 692, 198-203. http://dx.doi.org/10.1016/j.jallcom.2016.09.047   DOI
47 Fang, H., Cedervall, J., Hedlund, D., Shafeie, S., Deledda, S., Olsson, F., Fieandt, L.V., Bednarcik, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2018), "Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl", Sci. Rep., 8, 2525. https://doi.org/10.1038/s41598-018-20606-8   DOI
48 Gabay, A.M. and Hadjipanayis, G.C. (2015), "Application of mechanochemical synthesis to manufacturing of permanent magnets", JOM, 67, 1329-1335. https://doi.org/10.1007/s11837-015-1426-4   DOI
49 Si, P.Z., Park, J., Qian, H.D., Choi, C.J., Li, Y.S. and Ge, H. (2019a), "Enhanced magnetic performance of bulk nanocrystalline MnAl-C prepared by high pressure compaction of gas atomized powder", Bull. Mater. Sci., 42, 95. https://doi.org/10.1007/s12034-019-1768-6   DOI
50 Genc, A.M., Acar, O., Turan, S., Kalay, I., Savaci, U. and Kalay, Y.E. (2019), "Investigation of phase selection hierarchy in Mn-Al alloys", Intermetallics, 115, 106617. https://doi.org/10.1016/j.intermet.2019.106617   DOI
51 Han, K.H., Lee, C.T. and Choo, W.K. (1993), "On the position of carbon atom in the τ‐phase of carbon‐doped Mn‐Al permanent magnets", Phys. Stat. Solidi A, 136, 21-28. https://doi.org/10.1002/pssa.2211360103   DOI
52 Hirosawa, S., Nishino, M. and Miyashita, S. (2017), "Perspectives for high-performance permanent magnets: Applications, coercivity, and new materials", Adv. Nat. Sci: Nanosci. Nanotechnol., 8, 013002. https://doi.org/10.1088/2043-6254/aa597c   DOI
53 Jian, H., Skokov, K.P. and Gutfleisch, O. (2015), "Microstructure and magnetic properties of Mn-Al-C alloy powders prepared by ball milling", J. Alloys Compounds, 622, 524-528. https://doi.org/10.1016/j.jallcom.2014.10.138   DOI
54 Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Zigo, J., Mihalkovic, M., Marcin, J. and Skorvanek, I. (2017), "Phase analysis and structure of rapidly quenched Al-Mn systems", J. Alloys Compounds, 707, 137-141. https://doi.org/10.1016/j.jallcom.2016.11.171   DOI
55 Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Kunca, B., Marcin, J. and Skorvanek, I. (2018), "Formation of magnetic phases in rapidly quenched Mn-Based systems", J. Alloys Compounds, 749, 128-133. https://doi.org/10.1016/j.jallcom.2018.03.208   DOI
56 Jia, Y.X., Wu, Y.Y., Zhao, S., Wang, J.M. and Jiang, C.B. (2018), "Relation between solidification microstructure and coercivity in MnAl permanent-magnet alloys", Intermetallics, 96, 41-48. https://doi.org/10.1016/j.intermet.2018.02.011   DOI
57 Jimenez-Villacorta, F., Marion, J.L., Oldham, J.T., Daniil, M., Willard, M.A. and Lewis, L.H. (2014), "Magnetism-structure correlations during the ε→τ transformation in rapidly-solidified MnAl nanostructured alloys", Metals, 4, 8-19. https://doi.org/10.3390/met4010008   DOI
58 Kinemuchi, Y., Fujita, A. and Ozaki, K. (2016), "High-pressure synthesis of L10 MnAl with nearstoichiometric composition", Dalton Trans., 45, 10936. https://doi.org/10.1039/c6dt00947f   DOI
59 Si, P.Z., Lim, J.T., Park, J.H., Lee, H.H., Ge, H.L., Lee, H., Han, S., Kim, H.S. and Choi, C.J. (2020a), "High coercivity in MnAl disc prepared by severe plastic deformation", Phys. Stat. Solidi B, 257, 1900356. https://doi.org/10.1002/pssb.201900356   DOI
60 Si, P.Z., Qian, H.D., Wang, X.Y., Yang Y., Park, J.H., Ge, H.L. and Choi, C.J. (2019b), "High-pressure synthesis of high coercivity bulk MnAl-C magnets from melt-spun ribbons", J. Electron. Mater., 42, 794-798. https://doi.org/10.1007/s11664-018-6798-0   DOI
61 Si, P.Z., Choi, C.J., Park, J., Ge, H.L. and Du, J. (2020b), "Phase transformation and enhanced coercivity in B-N-doped MnAl nanocrystalline bulk alloys prepared by high pressure torsion", AIP Adv., 10, 015320. https://doi.org/10.1063/1.5130064   DOI
62 Su, K.P., Wang, J., Wang, H.O., Huo, D.X., Li, L.W., Cao, Y.Q. and Liu, Z.W. (2015), "Strain induced coercivity enhancement in Mn51Al46C3 flakes prepared by surfactant-assisted ball milling", J. Alloys Compd., 640, 114-117. https://doi.org/10.1016/j.jallcom.2015.04.040   DOI
63 Park, J.H., Hong, Y.K., Bae, S., Lee, J.J., Jalli, J., Abo, G.S., Neveu, N., Kim, S.G., Choi, C.J. and Lee, J.G. (2010), "Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet", J. Appl. Phys., 107, 09A731. https://doi.org/10.1063/1.3337640   DOI
64 Pasko, A., Lobue, M., Fazakas, E. Varga, L.K. and Mazaleyrat, F. (2014), "Spark plasma sintering of Mn-AlC hard magnets", J. Phys.: Condensed Matter, 26(6), 064203. https://doi.org/10.1088/0953-8984/26/6/064203   DOI
65 Radulov, I.A., Popov, V.V.Jr., Koptyug, A., Maccari, F., Kovalevsky, A., Essel, S., Gassmann, J., Skokov, K.P. and Bamberger, M. (2019), "Production of net-shape Mn-Al permanent magnets by electron beam melting", Addit. Manuf., 30, 100787. https://doi.org/10.1016/j.addma.2019.100787   DOI
66 Patel, K., Zhang, J.M. and Ren, S.Q. (2018), "Rare-earth-free high energy product manganese-based magnetic materials", Nanoscale, 10, 11701-11718. https://doi.org/10.1039/C8NR01847B   DOI
67 Poudyal, N. and Liu, J.P. (2013), "Advance in nanostructured permanent magnets research", J. Phys. D: Appl. Phys., 46, 043001. https://doi.org/10.1088/0022-3727/46/4/043001   DOI
68 Qian, H.D., Si, P.Z., Choi, C.J., Park, J. and Cho, K.M. (2018a), "Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling", AIP Adv., 8, 056216. https://doi.org/10.1063/1.5007176   DOI
69 Qian, H.D., Si, P.Z., Lim, J.T., Kim, J.W., Park, J.H. and Choi, C.J. (2018b), "Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites", J. Korean Phys. Soc., 73, 1703-1707. https://doi.org/10.3938/jkps.73.1703   DOI
70 Qian, H.D., Si, P.Z., Park, J., Cho, K.M. and Choi, C.J. (2019), "Structure and magnetic properties of nanocrystalline MnAl-C prepared by solid-state reaction and high-pressure compaction", J. Electron. Mater., 48, 1395-1399. https://doi.org/10.1007/s11664-018-06848-2   DOI
71 Rial, J., Villanueva, M., Cespedes, E., Lopez, N., Camarero, J., Marshall, L.G., Lewis, L.H. and Bollero, A. (2017), "Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders", J. Phys. D: Appl. Phys., 50, 105004. https://doi.org/10.1088/1361-6463/aa57a1   DOI
72 Manchanda, P., Kashyap, A., Shield, J.E., Lewis, L.H. and Skomski, R. (2014), "Magnetic properties of Fedoped MnAl", J. Magn. Magn. Mater., 365, 88-92. https://doi.org/10.1016/j.jmmm.2014.04.007   DOI
73 Saetang, P., Charoensuk, T., Boonyang, U., Jantaratana, P. and Sirisathitkul, C. (2020), "Phase transformations in Mn-Al and Mn-Bi magnets by repeated heat treatment", Trans. Ind. Inst. Met., 73, 929-936. https://doi.org/10.1007/s12666-020-01912-0   DOI
74 Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2015a), "Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling", Appl. Phys. Lett., 107, 192407. https://doi.org/10.1063/1.4935861   DOI
75 Saravanan, P., Vinod, V.T.P., Cernik, M., Selvapriya, A., Chakravarty, D. and Kamat, S.V. (2015b), "Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing", J. Magn. Magn. Mater., 374, 427-432. https://doi.org/10.1016/j.jmmm.2014.08.076   DOI
76 Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Zhang, H., Yoshimura, S. and Saito, H. (2016b), "Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization", J. Alloys Compounds, 675, 163-167. http://dx.doi.org/10.1016/j.jallcom.2016.03.098   DOI
77 Madugundo, R., Koylu-Alkan, O. and Hadjipanayis, G.C. (2016), "Bulk Mn-Al-C permanent magnets prepared by various techniques", AIP Adv., 6, 056009. https://doi.org/10.1063/1.4943242   DOI
78 Marshall, L.G., McDonald, I.J. and Lewis, L.H. (2016), "Quantification of the strain induced promotion of τMnAl via cryogenic milling", J. Magn. Magn. Mater., 404, 215-220. https://doi.org/10.1016/j.jmmm.2015.12.006   DOI
79 Mitsui, Y., Takanaga, Y., Kobayashi, R. and Koyama, K. (2020), "Effect of carbon addition on the phase stability of hcp-Mn-Al", Phys. B: Cond. Matter, 595, 412379. https://doi.org/10.1016/j.physb.2020.412379   DOI
80 Mix, T., Bittner, F., Müller, K.-H., Schultz, L. and Woodcock, T.G. (2017), "Alloying with a few atomic percent of Ga makes MnAl thermodynamically stable", Acta Mater., 128, 160-165. https://doi.org/10.1016/j.actamat.2017.02.011   DOI
81 Nguyen, V.T., Calvayrac, F., Bajorek, A. and Randrianantoandro, N. (2018), "Mechanical alloying and theoretical studies of MnAl(C) magnets", J. Magn. Magn. Mater., 462(15), 96-104. https://doi.org/10.1016/j.jmmm.2018.05.001   DOI
82 Obi, O., Burns, L., Chen, Y., Fitchorov, T., Kim, S., Hsu, K., Heiman, D., Lewis, L.H. and Harris, V.G. (2014), "Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders", J. Alloys Compounds, 582, 598-602. https://doi.org/10.1016/j.jallcom.2013.08.086   DOI
83 Ohtani, T., Kato, N., Kojima, S., Kojima, K., Sakamoto, Y., Konno, I., Tsukahara, M. and Kubo, T. (1977), "Magnetic properties of Mn-Al-C permanent magnet alloys", IEEE Trans. Magn., 13(5), 1328-1330. https://doi.org/10.1109/TMAG.1977.1059574   DOI
84 Palanisamy, D., Srivastava, C., Madras, G. and Chattopadhyay, K. (2017), "High-temperature transformation pathways for metastable ferromagnetic binary Heusler (Al-55 at.%Mn) alloy", J. Mater. Sci., 52, 4109-4119. https://doi.org/10.1007/s10853-016-0673-2   DOI
85 Palanisamy, D., Raabe, D. and Gault, B. (2019), "On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy", Acta Mater., 174, 227-236. https://doi.org/10.1016/j.actamat.2019.05.037   DOI
86 Palmero, E.M., Rial, J., de Vicente, J., Camarero, J., Skarman, B., Vidarsson, H., Larsson, P.O. and Bollero, A. (2018), "Development of permanent magnet MnAlC/ polymer composites and flexible filament for bonding and 3D-printing technologies", Sci. Technol. Adv. Mater., 19, 465-473. https://doi.org/10.1080/14686996.2018.1471321   DOI