• Title/Summary/Keyword: body stiffness

Search Result 495, Processing Time 0.033 seconds

Legged Robot Landing Control using Body Stiffness & Damping

  • Sung, Sang-Hak;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1928-1933
    • /
    • 2005
  • This Paper is about landing control of legged robot. Body stiffness and damping is used as landing strategy of a legged robot. First, we only used stiffness control method to control legged robot landing. Second control method,sliding mode controller and feedback linearization controller is applied to enhance position control performance. Through these control algorithm, body center of gravity behaves like mass with spring & damping in vertical direction on contact regime.

  • PDF

A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure (고속 금형가공센터 구조물의 강성평가에 관한 연구)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage (탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구)

  • Lee, Kun-Hee;Bae, Jong-Gug;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

Digital Optimal Contorl of Servomotor System Considering Torsional Vibration Characteristics (비틀림 진동특성을 고려한 서어보모터계의 디지털 최적제어)

  • Jo, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.52-60
    • /
    • 1989
  • In order to control the transient torsional vibration of rotational shaft system, the torsional stiffness of it has been taken into account in modelling the plant. In this paper the observer and controller has been designed in two ways. One is to consider the torsional stiffness and the other is to idealize the rotational shaft as rigid body. The third order observer considering torsional stiffness shows stable response on computer simulation. When the observer is designed on assumption of the rotational shaft being rigid body, the reduced order observer shows stable response whereas the full order observer shows unstable response.

  • PDF

Analysis Of the Joint Structure of the Vehicle Body by Condensed Joint Matrix Method

  • Suh, Myung-Won;Yang, Won-Ho;Jonghwan Suhr
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1639-1646
    • /
    • 2001
  • It is often necessary that the joints characteristics should be determined in the early stage of the vehicle body design. The researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle structure were expressed as the condensed matrix forms from the full joint stiffness matrix. The condensed joint stiffness matrix was applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, it was applied to the real center pillar model and the full vehicle body in order to validate the practical application.

  • PDF

Application of Condensed Joint Matrix Method to the Joint Structure of Vehicle Body (축약 행렬법을 적용한 차체 결합부 해석)

  • 서종환;서명원;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 1998
  • The joint characteristics are necessary to be determined in the early stage of the vehicle body design. Researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle struct- ure were expressed as condensed forms from the full joint stiffness and mass matrix. The condensed joint stiffness and mass matrix were applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, those were applied to center pillar and full vehicle body to validate the practical application.

  • PDF

A Study on Torsional Stiffness Improvement of a Vehicle (자동차의 비틀림 강성 향상에 관한 연구)

  • 임기창;임석현
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 1997
  • Using high tensile steel plate makes the vehicle body stiffness lower even though it can lessen the fuel consume rate in application of weight reduction. The crack which happens arround vehicle window glass is brought about due to fatigue with low torsional stiffness. The paper presents a most suitable way to increase torsional stiffness using elasticity theory. Also the result of this study shows good agreement with FEM and experiments. We used a passenger car for calculation in this paper. Because we can apply the result of this study to fire engine as well as passenger car.

  • PDF

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

Evaluation of Vehicle Body Stiffness by Measuring Local Vibration (위치별 진동 측정을 통한 차체강성평가)

  • Lee, Kyung Tae;Jun, Yong Du;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.195-200
    • /
    • 2013
  • Road loads data are indispensable in the evaluation of BSR (Buzz, Squeak, and Rattle) of automotive parts/modules. However, there are uncertainties on the best measurement locations for representative body motion and for seat systems. In the present study, we measure road loads at four different locations of a body. A-pillars on the driver and passenger sides and left and right frame fronts of the front passenger seat mountings are selected to study the acceleration behavior at different locations. The measurements are conducted with passenger cars driving local roads at 50km/hr. The measured time-acceleration data are then transformed into PSD (power spectral density) data to compare the characteristics of local accelerations. By defining the deviated acceleration components from rigid body motion, the stiffness of vehicle body could be simply expressed in a quantitative basis. Measured data from two different vehicles are presented to demonstrate their relative vehicle body stiffness.