Browse > Article
http://dx.doi.org/10.5103/KJSB.2017.27.2.109

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running  

Hyun, Seung Hyun (Department of Kinesiology, Jeju University)
Ryew, Che Cheong (Department of Kinesiology, Jeju University)
Publication Information
Korean Journal of Applied Biomechanics / v.27, no.2, 2017 , pp. 109-116 More about this Journal
Abstract
Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.
Keywords
Leg stiffness; Load; Running; Relationship; Kinematic variables;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Abdel-Aziz, Y. I. & Karara, H. M. (1971). Direct liner transformation from comparator into object space coordinates inclose-range photogrammetry. Proceeding of the Symposium on close-range Photogrammetry (1-18). Falls church, VA: American society of photogrammetry.
2 Alexander, R. (1980). Optimum walking techniques for quadrupeds and bipeds. Journal of Zoology, 192(1), 97-117.   DOI
3 Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69(4), 1199-1227.   DOI
4 Alexander, R. M. (1992). A model of bipedal locomotion on compliant legs. Philosophical Transactions of the Royal Society B: Biological Sciences, 338(1284), 189-198.   DOI
5 Arampatzis, A., Brüggemann, G. P. & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353.   DOI
6 Asmussen, E. & Bonde-Petersen, F. (1974). Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiologica Scandinavica, 92(4), 537-545.   DOI
7 Bishop, M., Fiolkowski, P., Conrad, B., Brunt, D. & Horodyski, M. (2006). Athletic footwear, leg stiffness, and running kinematics. Journal of Athletic Training, 41(4), 387.
8 Blum, Y., Lipfert, S. W. & Seyfarth, A. (2009). Effective leg stiffness in running. Journal of Biomechanics, 42(14), 2400-2405.   DOI
9 Bovens, A. M. P., Janssen, G. M. E., Vermeer, H. G. W., Hoeberigs, J. H., Janssen, M. P. E. & Verstappen, F. T. J. (1989). Occurrence of running injuries in adults following a supervised training program. International Journal of Sports Medicine, 10(3), 186-190.   DOI
10 Bullimore, S. R. & Burn, J. F. (2006). Consequences of forward translation of the point of force application for the mechanics of running. Journal of Theoretical Biology, 238(1), 211-219.   DOI
11 Butler, R. J., Crowell, H. P. & Davis, I. M. (2003). Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18, 511-517.   DOI
12 Cappellini, G., Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 3426-3437.   DOI
13 Cheung, R. T. & Rainbow, M. J. (2014). Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners. Human Movement Science, 34, 120-127.   DOI
14 Dutto, D. J. & Smith, G. A. (2002). Changes in spring-mass characteristics during treadmill running to exhaustion. Medicine and Science in Sports and Exercise, 34(8), 1324-1331.   DOI
15 Cook, T. M., Farrell, K. P., Carey, I. A., Gibbs, J. M. & Wiger, G. E. (1997). Effects of restricted knee flexion and walking speed on the vertical ground reaction force during gait. Journal of Orthopaedic & Sports Physical Therapy, 25(4), 236-244.   DOI
16 Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L. & Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37(8), 757-767.   DOI
17 Donelan, J. M. & Kram, R. (2000). Exploring dynamic similarity in human running using simulated reduced gravity. Journal of Experimental Biology, 203(16), 2405-2415.
18 Farley, C. T. & Gonzalez, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29(2), 181-186.   DOI
19 Farley, C. T., Blickhan, R., Saito, J. & Taylor, C. R. (1991). Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology, 71(6), 2127-2132.   DOI
20 Farley, C. T., Glasheen, J. & McMahon, T. A. (1993). Running springs: speed and animal size. Journal of Experimental Biology, 185(1), 71-86.
21 Feehery Jr, R. V. (1986). The biomechanics of running on different surfaces. Clinics in Podiatric Medicine and Surgery, 3(4), 649-659.
22 Ferris, D. P., Louie, M. & Farley, C. T. (1998). Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society of London B: Biological Sciences, 265(1400), 989-994.   DOI
23 Hennig, E. M. & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. International Journal of Sport Biomechanics, 7(3), 303-309.   DOI
24 Grimston, S. K., Engsberg, J. R., Kloiber, R. & Hanley, D. A. (1991). Bone mass, external loads, and stress fracture in female runners. International Journal of Sport Biomechanics, 7(3), 293-302.   DOI
25 Hargrave, M. D., Carcia, C. R., Gansneder, B. M. & Shultz, S. J. (2003). Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training, 38(1), 18.
26 He, J. P., Kram, R. & McMahon, T. A. (1991). Mechanics of running under simulated low gravity. Journal of Applied Physiology, 71(3), 863-870.   DOI
27 Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V. & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes a prospective study. The American Journal of Sports Medicine, 27(6), 699-706.   DOI
28 Hortobagyi, T., Finch, A., Solnik, S., Rider, P. & DeVita, P. (2011). Association between muscle activation and metabolic cost of walking in young and old adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66(5), 541-547.
29 Hyun, S. H. & Ryew, C. C. (2016). Relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Korean Journal of Sport Biomechanics, 26(3), 249-255.   DOI
30 Kerdok, A. E., Biewener, A. A., McMahon, T. A., Weyand, P. G. & Herr, H. M. (2002). Energetics and mechanics of human running on surfaces of different stiffnesses. Journal of Applied Physiology, 92(2), 469-478.   DOI
31 McMahon, T. A. & Cheng, G. C. (1990). The mechanics of running: how does stiffness couple with speed?. Journal of Biomechanics, 23, 65-78.   DOI
32 Kuitunen, S., Komi, P. V., & Kyrolainen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise, 34(1), 166-173.   DOI
33 Lipfert, S. W., Günther, M., Renjewski, D., Grimmer, S. & Seyfarth, A. (2012). A model-experiment comparison of system dynamics for human walking and running. Journal of Theoretical Biology, 292, 11-17.   DOI
34 Luhtanen, P. & Komi, P. V. (1980). Force-, power-, and elasticity-velocity relationships in walking, running, and jumping. European Journal of Applied Physiology and Occupational Physiology, 44(3), 279-289.   DOI
35 McMahon, T. A., Valiant, G. & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology, 62(6), 2326-2337.   DOI
36 Mero, A. & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553-561.   DOI
37 Plagenhoef, S. C., Evans, F. G. & Abdelnour, T. (1983). Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport, 54(2), 632-635.
38 Ryu, J. S. (2013). Effect of a prolonged-run-induced fatigue on the ground reaction force components. Korean Journal of Sport Biomechanics, 23(3), 225-233.   DOI
39 Ryu, J. S. (2014). Variability of GRF components between increased running times during prolonged run. Korean Journal of Sport Biomechanics, 24(4), 359-365.   DOI
40 Ryu, J. S. (2015). Impact shock components and attenuation in flat foot running. Korean Journal of Sport Biomechanics, 25(3), 283-291.   DOI
41 Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S. & Delp, S. L. (2010). Muscle contributions to support and progression during singlelimb stance in crouch gait. Journal of Biomechanics, 43(11), 2099-2105.   DOI
42 Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D. & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine and Science in Sports and Exercise, 43(7), 1260-1271.   DOI
43 Seyfarth, A., Geyer, H., Gunther, M. & Blickhan, R. (2002). A movement criterion for running. Journal of Biomechanics, 35(5), 649-655.   DOI
44 Silder, A., Besier, T. & Delp, S. (2015). Running with a load increases leg stiffness. Journal of Biomechanics, 48(6), 1003-1008.   DOI
45 Stefanyshyn, D. J. & Nigg, B. M. (1998). Dynamic angular stiffness of the ankle joint during running and sprinting. Journal of Applied Biomechanics, 14(3), 292-299.   DOI
46 Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R. & Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.   DOI
47 Taylor, C. R., Heglund, N. C. & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97(1), 1-21.
48 Teunissen, L. P., Grabowski, A. & Kram, R. (2007). Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 210(24), 4418-4427.   DOI
49 van Gent, B. R., Siem, D. D., van Middelkoop, M., van Os, T. A., Bierma- Zeinstra, S. S. & Koes, B. B. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British Journal of Sports Medicine, 41(9), 169-480.
50 Watson, M. D. (1987). Incidence of injuries in high school track and field athletes and its relation to performance ability. The American Journal of Sports Medicine, 15(3), 251-254.   DOI
51 Williams, P. T. (2009a). Lower prevalence of hypertension, hypercholesterolemia, and diabetes in marathoners. Medicine and Science in Sports and Exercise, 41(3), 523.   DOI
52 Williams, P. T. (2009b). Reduction in incident stroke risk with vigorous physical activity. Stroke, 40(5), 1921-1923.   DOI
53 Wit, B. D., Clercq, D. D. & Lenoir, M. (1995). The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. Journal of Applied Biomechanics, 11(4), 395-406.   DOI