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Abstract— This Paper is about landing control of legged
robot. Body stiffness and damping is used as landing strategy
of a legged robot. First, we only used stiffness control method
to control legged robot landing. Second control method,sliding
mode controller and feedback linearization controller is
applied to enhance position control performance. Through
these control algorithm, body center of gravity behaves like
mass with spring & damping in vertical direction on contact
regime.

Index Terms— Landing, Stiffness, Damping, Legged Robot

I. I NTRODUCTION

Humanoid robot research is one of the most interested
areas to robot engineers these days. Until now, rapid im-
provements of humanoid technology makes it possible that
humanoid can walk, go up and down stairs, co-work with
human, even jog and do hazardous work instead of human.
Nowadays humanoid researchers endeavor to improve the
humanoids which can do work more independently and
move faster.
Running or hopping motion realization is more complicated
work than walking because there is big impact force from
ground when it touches down. And more joint torque or
actuator force is required to fulfill this fast motion. Running
robots have been studied by Raibert [5].Their hopping
robots driven by pneumatic and hydraulic actuators per-
formed various actions. Recently, some kinds of robots now
become to run or hop with its two legs.
In this paper, we propose a control scheme for legged robot
to land safely using body stiffness & damping behavior. On
first method, we control posture using only stiffness control
scheme. Original idea of using body stiffness & damping
is based on our previous work on continuous hopping
strategy, stiffness modulation method [3]. In this paper, to
make robot behave like spring and damper, we use stiffness
control formulation and change it into proper form. In [4],
we can find similar method about robot walking. They use
a virtual model control to make a biped walk. Selection
of virtual model and modification of its value is up to
engineer and virtual model is applied on leg module. In our
work, we use stiffness control scheme to make whole body
move in stiffness & damping behavior. The second control
method is using sliding mode controller and feedback

linearization controller to make robot behave like stiffness
modulated-fashion. To move like mass with spring-damper
behavior, we will solve 2nd order differential equation for
spring-mass-damper system. From this equation, we can
get desired trajectories.

Robot model is in Fig. 1.

Fig. 1. Dimension of the model

Section 2 describes the stiffness modulation method.
Section 3 shows stiffness control formulation to use body
stiffness and damping in legged robot model and presents
dynamic simulation results of legged robot landing. Section
4 shows another control result to enhance position control
performance using sliding mode controller and feedback
linearization controller.

II. STIFFNESSMODULATION METHOD(STIMM)

When human hops continually, leg stiffness value in-
creases from touch-down to take-off with same initial value
on every instant. Below equation is for leg stiffness of
human body(leg) when he modulates its value.

kleg =
Fpeak

∆L
(1)

(Fpeak : peak reaction force in the force platform when
human jumps onto that,∆L : vertical displacement of body
center of mass)
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Human also uses this leg stiffness modulation on terrain
adaptation. It is known that human makes a stiffness
adaptation according to change in terrain condition [6].

This stiffness modulation method also applied to me-
chanical system. In [3], we can see that continuous
hopping motion is successful using stiffness modula-
tion(Fig 2). Stiffness value of the mechanical system is
varied(increased) to compensate energy decrease which
comes from impact with ground.
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Fig. 2. STIMM on simple model

III. L EGGEDROBOT LANDING USING STIFFNESS

CONTROL

To apply body stiffness & damping on legged robot,
there needs definition on stiffness and damping value.
Simulation model does not have physical spring. So let’s
suppose that there is virtual spring element starts from
ground and it is attached to the center of gravity point
of the model. Through attachment of virtual spring, one
can make robot move like mass with spring and damper.
All of the profess is confined in contact regime.

A. Attachment of Virtual Spring on Center of Gravity point

To express virtual spring attachment, let’s use stiffness
control equation.

τ = JT
g Fg, (Fg : force from ground) (2)

(subscript g and G mean ground point and center of
gravity point respectively)

In above equation,JT
g is defined in local frame{F}

in Fig 3, because it is more easy expressing robot’s in-
dependent stiffness behavior and it is more natural than
expressing in global frame.

To expressFG in the equation, we introduce these
relations according to the virtual work theorem.

δXG = JGδθ (3)

δXg = Jgδθ (4)

XG

{F}

{G}

{O} Xg

Fig. 3. Local coordinate and vectors

δXG = HδXg, (H = JGJ−1
g ) (5)

Fg = HTFG (6)

If we insert eqn 6 into eqn 2 and If we use equation
which can express stiffness behavior of center of gravity,
FG = KGδXG, summarized equation is like this.

τ = JT
g HTKGHJgδθ (7)

We can make eqn 7 simple.

τ = JT
GKGJGδθ (8)

Through similar way, damping force also can be im-
plemented to the center of gravity. Damping forceFD is
defined as

FD = DGẊG (9)

Resulting torque to the robot is shown below.

τ = JT
G(FK −FD) (10)

From above equation, we can impose stiffness and
damping behavior on legged robot. We can try free fall
simulation of the robot and the result is in Fig 4, Fig 5.
Simulation model has a physical property as,m0 = 0.5kg,
m1 = 1.0kg, m2 = 1.0kg, m3 = 3kg, l0 = 0.1m, l1 = 0.3m,
l2 = 0.3m, l3 = 0.3m, r01 = 0.1m, r02 = 0.05m. Robot’s
center of gravity springs out from ground asif it has spring
on its end.

When the robot is on contact regime, environment
through stiffness control method can be explained as in
Fig.(6).
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Fig. 4. Freefalling, Energy and CG y-displacement
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Fig. 5. Free Falling with Stiffness behavior(time passes rightward)

B. Landing Simulation using Stiffness Control

Landing simulation has been performed. In Fig.(7), we
can see the force magnitude on center of gravity in x-, y-
direction due to joint torque. In Fig.(8), first graph shows y-
dir. center of gravity displacement on which we can identify
apparent spring-damper effect on mass. Robot has settled
down on ground and we can see that there was energy
decrease because of damping and impact force on foot.
Vertical stiffness and damping value was used as 5000(Nm)
and 100(Nm/s) respectively

Using only simple stiffness controller on center of
gravity, we could make landing motion available. From
this simulation, we can see that using only body stiffness
and damping behavior, legged robot system can land sta-
ble without another position control or force control. In
human case, this stiffness and damping behavior is also
most prominent phenomenon in hopping or landing from
air. Hopping motion is also possible using only stiffness
control, but hard to control its posture.

Because of simplicity of controller, we could not control
robot posture accurately. Especially, in tracking desired x
position center of gravity, there needs too much time. On
next section, we will show another controller which uses
variable structure controller(sliding mode controller).

Fig. 6. Virtual environment in contact regime

Fig. 7. Force on CG in x-,y- direction

IV. L EGGEDROBOT LANDING USING SLIDING MODE

CONTROL

A. Dynamics of Legged Robot in Contact Regime

Modelling and dynamics formulation is first required
to formulate controller. Legged robot system can be con-
sidered as underactuated system on its contact regime
because there arises passive joint between the foot and the
ground. We assume here that passive joints have the form
in rotational joint, not in the translational joints(no sliding
in contact point). This type of underactuated system can
be modelled as below equation(Eq.(11)).

[
0
τa

]
=

[
Muc Mur

Mac Mar

][
q̈r

q̈c

]
+

[
bu

ba

]
(11)

This dynamic system has nonholonomic constraints,
which is like Eq.(12).

Mucq̈c +Murq̈r +bu = 0 (12)

(Subscript a, u, c, and r denote quantities related to the
active, passive, controlled and uncontrolled joints respec-
tively. Active joint can also be an uncontrolled joint.)

B. Dynamic Coupling

The position of an underactuated passive joint cannnot
be directly controlled because this joint is not equipped
with actuator. The passive joint, however, is dynamically
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Fig. 8. y-dir CG displacement & Energy change
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Fig. 9. Landing simulation(time passes rightward)

coupled to the active joints because of the presence of
non-zero off-diagonal elements in the inertia matrix. In
this section, we present the coupling index between the
acceleration of the passive joint and the accelerations or
torques of the active ones.

1) Acceleration Coupling Index:From Eq.(12), ifMuu

is invertible, we can write

q̈u =−M−1
uu Muaq̈a−M−1

uu bu (13)

If we set ¨̄qu as q̈u +M−1
uu bu, we can write Eq.(13) as

¨̄qu =−M−1
uu Muaq̈a = Guaq̈a (14)

To quantify the coupling between the active and the pas-
sive joint, it is natural to think of the singular values ofGua.
So the acceleration coupling index of the underactuated
legged robot system is

ρα(q) =
nu

∏
i=1

σi(Gua) (15)

Acceleration coupling index for proposed legged robot
model is in Fig.10. From figure, we can identify that
the proposed system’s acceleration of passive joint can be
controlled using active joints’ acceleration.
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Fig. 10. Acceleration coupling index for legged robot model

2) Torque to Acceleration Coupling Index:Using sim-
ilar process as in acceleration coupling index, we can
calculate coupling index between active torque to passive
joint’s acceleration(Eq.(16), Fig.11).

q̈a = M−1
aa (τa−Maaq̈u−ba) (16)
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Fig. 11. Torque to acceleration coupling index for legged robot model

C. Feedback Linearization Controller

If we recall Eq.(11), we can reformulate this one into
more simple form.
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There are two possible ways of forming thena × 1
vector qc, each one leading to a different strategy for the
underactuated legged robot system. First,qc may contain
only active joints. When this is the case, we assume all
passive joints(joint between the foot and the ground) is
locked(i.e foot is full contact condition with ground). This
case allows us to control the active joints as if the robot
were rooted to the ground(it is an assumption). Second,
the vectorqc may contain both active and passive joints.
According control strategies is shown below as strategy A
& AP.

1) Control Strategy A:

τa = Maaq̈a +ba (17)

2) Control Strategy AP:

τa = (Mac−MarM
−1
ur Muc)q̈c−MarM

−1
ur bu +ba (18)

Above two control strategies lead to open loop relation-
ships between̈qc andτa of the form,

τa = M̄acq̈c + b̄a (19)

Feedback linearization controller(Eq.(20)) now make
above system into linear plant.

τa = M̄acu+ b̄a (20)

if M̄ac is invertible, resulting system is like this

q̈c = u (21)

D. Robust Control - Sliding Mode Control

In practice, modelling error and eternal disturbances
are common. Landing motion also has impact phenomena
which is huge disturbance to the system. In this section,
we apply robust controller, sliding mode controller, which
guarantees asymptotic convergence of the controlled joints
to their set points. Because the description of the sliding
surface is independent of the system’s kinematic and dy-
namic parameters, errors in these quantities do not affect
the behavior of the system while in the sliding mode.

Sliding surface is defined like this.

Sc = Γcq̃c + ˙̃qc (22)

According auxiliary input u is chosen as,

u = Γc ˙̃qc + q̈d
c +Kcsgn(Sc) (23)

(where q̈c is the desired acceleration of the controlled
joints, and Γc and Kc are diagonal gain matrices with
positive elements.

To avoid chattering in the state trajectory and avoid the
excitation of unmodelled high-frequency dynamic compo-
nents, we utilize instead the tanh function.

E. Desired path in body stiffness & damping behavior

Stiffness control on center of gravity, which was used in
previous chapter, did not need desired trajectories because
of its simple control form. But, to fulfill accurate motion
control on legged robot, we need high level control and
accordingly we need desired trajectories for each joints.
If whole body mass is m, desired body stiffness is k and
desired body damping is d, we can make dynamic equation
for mass with spring-damper system.

mÿ = (y0−y)k−dẏ−mg (24)

if we reformulate upper equation,

ÿ+
d
m

ẏ+
k
m

y =
y0k−mg

m
(25)

ÿ+k1ẏ+k2y = g1 (26)

where(k1 = d/m,k2 = k/m,g1 = (y0k−mg)/m))

if we solve Eq.(26),

y(t) = C1eλ1t +C2eλ2t +g1/k2, y(0) = h1, ẏ(0) = h2 (27)

λ1,2 =
−k1 +−

√
k2

1−4k2

2
(28)

C1 =
h1λ2−h2−g1/k2λ2

λ2−λ1
(29)

C2 =
1

λ2−λ1
(h2−h1λ1 +g1/k2λ1) (30)

Initial conditiony(0) andẏ(0) is assigned as the position
and the velocity of center of gravity on initial foot impact
on landing. Desired center of gravity trajectory fory(0) =
0.5(m) and ẏ(0) =−1.0(m/s) is in Fig. 12.

F. Landing Simulation using Sliding Mode Control

In this section, we apply the controllers provided until
now. Overall control diagram is in Fig.14. On initial impact
state, nearly all over the cases are point contact(Fig.13(a,
b)). So, PA control strategy is first used to control foot
joint(θ0) to zero while another one active joint is not
controlled(hip joint,θ3 in this paper). If passive joint(θ0)
comes to zero(Fig.13(c)), we can apply A control strategy
to make robot move in body stiffness & damping behavior.
If there is ripple inθ0 which means point contact state,
PA control strategy is applied again to make foot stick to
the ground. This PA strategy can be used to make robot’s
posture stable from tipping over. From Fig.15, we can
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Fig. 12. Desired body stiffness & damping path

see that sliding mode controller with feedback lineariza-
tion controller shows position tracking performance in y-
direction center of gravity trajectory(Detailed snapshot of
simulation is omitted here).

Fig. 13. Contact States (a),(b) : point contact, (C) : full contact

Fig. 14. Control block diagram

V. CONCLUDING REMARK & FUTURE WORK

In this paper, we tried legged robot landing through two
control method. Main idea was using body stiffness &

Fig. 15. y-dir. center of gravity desired & displacement

damping concept to make legged robot land on ground.
First, we used stiffness control method, which was simple
to apply made good performance about stiffness & damping
behavior. But it racked in position control accuracy. In
applying sliding mode controller, we developed underactu-
ated formulation for legged robot and the controller showed
enough position control performance.

To be more natural in landing like human, blending these
two control strategies’ advantage is our future work.
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