• Title/Summary/Keyword: blood brain barrier

Search Result 195, Processing Time 0.019 seconds

Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model

  • Lee, Jae Hoon;Kam, Eun Hee;Kim, Jeong Min;Kim, So Yeon;Kim, Eun Jeong;Cheon, So Yeong;Koo, Bon-Nyeo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of $interleukin-1{\beta}$ and tumor necrosis $factor-{\alpha}$ at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia.

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji;Ryu, Onjeon;Kim, Do Gyeong;Mabunga, Darine Froy;Cho, Kyu Suk;Kim, Yujeong;Han, Seol-Heui;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.

Phenylketonuria: Current Treatments and Future Developments (페닐케톤뇨증의 치료: 현재와 미래)

  • Lee, Jeongho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2020
  • Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase (PAH) gene. If untreated or late treated, results in profound and irreversible mental disability. Newborn screening test identify patients with phenylketouria. The early initiation of a phenylalanine restricted diet very soon prevents most of the neuropsychiatric complications. However, the diet therapy is difficult to maintain and compliance is poor, especially in adolescents and adulthood. Since 2015, American Medical College of Medical Genetics and Genomics (ACMG) recommended more strong restrictive diet therapy for target blood level of phenylalanine (<360 umol/L). For over four decades the only treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy (Tetrahydrobiopterin, BH4) which is effective in up to 30% of patients. Data from controlled clinical trials with sapropterin dihydrochloride indicate a similar occurrence of all-cause adverse events with this treatment and placebo. Large neutral aminoacids (LNAA) competes with phenylalanine for transport across the blood-brain-barrier and have a beneficial effect on executive functioning. A new therapy has just been approved that can be effective in most patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. Phenylalanine ammonia lyase (PAL-PEG) was approved in the USA by FDA in May of 2018 for adult patients with uncontrolled blood phenylalanine concentrations on current treatment. Nucleic acid therapy (therapeutic mRNA or gene therapy) is likely to provide longer term solutions with few side effects.

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Effect of Lactobacillus dominance modified by Korean Red Ginseng on the improvement of Alzheimer's disease in mice

  • Lee, Mijung;Lee, So-Hee;Kim, Min-Soo;Ahn, Kwang-Sung;Kim, Manho
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.464-472
    • /
    • 2022
  • Background: Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods: Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aβ) accumulation demonstrated through Aβ 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results: KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aβ 42/40 ratio (p < 0.01) indicating reduced Aβ accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions: KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.

$^{99m}Tc$ Labeling and Biodistribution of PRODD as a Cerebral Blood Flow Imaging Radiopharmaceutical (뇌혈류 영상용 방사성의약품 PRODD의 $^{99m}Tc$ 표지 및 생체내분포)

  • Chung, Soo-Wook;Jeong, Jae-Min;Lee, Dong-Soo;Cho, Jung-Hyuck;Oh, Seung-Joon;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.328-331
    • /
    • 1995
  • $^{99m}Tc$ labeled PnAO(propylene amine oxime) derivatives have been widely studied as brain perfusion agents. We synthesized and characterized a PnAO derivative, (RR/SS/ meso)-4,8-diaza-3,9-dimethylundecane-2, 10-dione bisoxime(PRODD). Proton-NMR spectroscopy and thin layer chromatography(silica gel) were performed for its characterization. PRODD was labeled with $^{99m}Tc$ using stannous chloride as reducing agent. The labeling efficiency was determined to be about 85%. Brain uptakes of $4.16{\pm}0.42$ %ID/g and $3.24{\pm}0.13$ %ID/g were found after 10min and 30min after intravenous injection. Brain-to-blood ratios were 1.17 and 0.75 at 10 and 30 minutes, which were lower than 1.3 and 1.9 of the ratios with commercial ${\pm}$-HMPAO. Autoradiographs of rat brain sections showed the gray matter to white matter ratios of $1.13{\pm}0.10$ at 30 min after intravenous injection, which was lower than $1.94{\pm}0.19$ of commercial $^{99m}Tc$-HMPAO. With the above findings, we concluded that the lipophilic $^{99m}Tc$-PRODD complex was able to cross the blood-brain barrier, however the complex showed lower uptake than $^{99m}Tc$-HMPAO in mouse or rat brains. We could suggest possibility that PRODD could be used as another $^{99m}Tc$ chelator.

  • PDF

Transport of choline and its relationship to transport of cationic drugs in immortalized rat brain capillary endothelial cell line

  • Park, Hong-Mi;Lee, Kyeong-Eun;Lee, Na-Young;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.106-106
    • /
    • 2003
  • Choline serves critical roles in the CNS both as a precursor of neurotransmitter and as an essential component of membrane phospholipids. The long-term maintenance of brain choline concentration is dependent on choline transport across the blood-brain barrier (BBB), And, we examined to elucidate the characteristics of transport of choline across the BBB using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The [$^3$H]choline in TR - BBB was increased by time dependently, but independent on Na$\^$+/, and the transport process is saturable with Michaelis-Menten constrant, Km of about 26 ${\mu}$M. The uptake of [$^3$H]choline is susceptible for inhibition by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and $\ell$-carnitine. Also, we investigated the relationship of transport of choline and cationic drugs. The uptake of [$^3$H]choline is inhibited by antioxidant, a-phenyl-n-tert-butyl nitrone (PBN) with IC$\sub$50/ of 1.2 mM. and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine, tacrine and donepezil. Also, choline uptake presented competitive inhibition with PBN, donepezil and acetyl $\ell$-carnitine in Lineweaver-Burk plot. In conclusion, TR-BBB cells express a saturable transport system for uptake of choline, and several cationic drugs may be transported into the brain by BBB choline transporter.

  • PDF

Health Effects of Mercury Exposure on Some School Children in Korea (혈중수은 노출에 따른 일부 초등학생의 건강영향에 관한 연구)

  • Kim, Dae-Seon;Kim, Guen-Bae;Kang, Tack-Shin;Lee, Jong-Hwa;Nam, Sang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.345-352
    • /
    • 2007
  • As mercury absorbed into body can cross the blood-brain barrier and react with DNA and RNA. Central nervous system has been known to be affected especially in children. But it was very difficult to know the influences of chronic low-does Hg exposure on the health. Although many studies investigated the affect, most of results were still disparate. In order to investigate the health effects of mercury exposure, several test were conducted for some Korean school children. The general health effects were investigated using blood test, Posturography and computer-based neurobehavioral test was done to examine the affect of Hg into neural responses. About 400 children were chosen for blood test whose blood Hg level were upper and lower 10% of population participated in the nationwide Hg exposure survey. The concentration of calcium and creatine, the number of white and red blood cell showed statistical significance with Hg exposure in blood test. Another 36 children were selected from the same participants for the posturography and neurobehavioral test. The intensity and center frequency of hand tremor which were related to unconsciousness also showed distinct significances. Any general relations with Hg exposure were not found in all test including computer-based neurobehavioral test.

Possible Role of Heme Oxygenase-1 and Prostaglandins in the Pathogenesis of Cerebral Malaria: Heme Oxygenase-1 Induction by Prostaglandin $D_2$ and Metabolite by a Human Astrocyte Cell Line

  • Kuesap, Jiraporn;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) $D_2$ is abundantly produced in the brain and regulates the sleep response. Moreover, $PGD_2$ is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with $PGD_2$ significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that $PGD_2$ treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, $PGD_2$ may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.

Improvement of Leptin Resistance (렙틴 저항성의 개선)

  • Kim, Yong Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.