Transport of choline and its relationship to transport of cationic drugs in immortalized rat brain capillary endothelial cell line

  • Published : 2003.11.01

Abstract

Choline serves critical roles in the CNS both as a precursor of neurotransmitter and as an essential component of membrane phospholipids. The long-term maintenance of brain choline concentration is dependent on choline transport across the blood-brain barrier (BBB), And, we examined to elucidate the characteristics of transport of choline across the BBB using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The [$^3$H]choline in TR - BBB was increased by time dependently, but independent on Na$\^$+/, and the transport process is saturable with Michaelis-Menten constrant, Km of about 26 ${\mu}$M. The uptake of [$^3$H]choline is susceptible for inhibition by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and $\ell$-carnitine. Also, we investigated the relationship of transport of choline and cationic drugs. The uptake of [$^3$H]choline is inhibited by antioxidant, a-phenyl-n-tert-butyl nitrone (PBN) with IC$\sub$50/ of 1.2 mM. and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine, tacrine and donepezil. Also, choline uptake presented competitive inhibition with PBN, donepezil and acetyl $\ell$-carnitine in Lineweaver-Burk plot. In conclusion, TR-BBB cells express a saturable transport system for uptake of choline, and several cationic drugs may be transported into the brain by BBB choline transporter.

Keywords