DOI QR코드

DOI QR Code

Possible Role of Heme Oxygenase-1 and Prostaglandins in the Pathogenesis of Cerebral Malaria: Heme Oxygenase-1 Induction by Prostaglandin $D_2$ and Metabolite by a Human Astrocyte Cell Line

  • Kuesap, Jiraporn (Graduate Porgram in Biomedical Sciences, Clinical Coordination and Training Center, Thammasat University) ;
  • Na-Bangchang, Kesara (Graduate Porgram in Biomedical Sciences, Clinical Coordination and Training Center, Thammasat University)
  • Received : 2009.12.12
  • Accepted : 2010.01.28
  • Published : 2010.03.15

Abstract

Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) $D_2$ is abundantly produced in the brain and regulates the sleep response. Moreover, $PGD_2$ is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with $PGD_2$ significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that $PGD_2$ treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, $PGD_2$ may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.

Keywords

References

  1. Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab 2003; 23: 137-149. https://doi.org/10.1097/01.WCB.0000044631.80210.3C
  2. Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, Frey W-2nd, Haase AT. Neuropathological changes in scrapie and Alzheimer's disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 1991; 65: 4759-4768.
  3. Murayama S, Inoue K, Kawakami H, Bouldin TW, Suzuki K. A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol 1991; 82: 456-461. https://doi.org/10.1007/BF00293379
  4. Aloisi F, Borsellino G, Care A, Testa U, Gallo P, Russo G, Peschle C, Levi G. Cytokine regulation of astrocyte function: in-vitro studies using cells from the human brain. Int J Dev Neurosci 1995; 13: 265-274. https://doi.org/10.1016/0736-5748(94)00071-A
  5. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 2003; 34: 385-397. https://doi.org/10.1016/S0143-4160(03)00128-3
  6. Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 2002; 200: 629-638. https://doi.org/10.1046/j.1469-7580.2002.00064.x
  7. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16: 1-13. https://doi.org/10.1016/j.nbd.2003.12.016
  8. Maxwell K, Berliner JA, Cancilla PA. Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 1987; 410: 309-314. https://doi.org/10.1016/0006-8993(87)90329-5
  9. Neuhaus J, Risau W, Wolburg H. Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann N Y Acad Sci 1991; 633: 578-580. https://doi.org/10.1111/j.1749-6632.1991.tb15667.x
  10. Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 1997; 19: 13-26. https://doi.org/10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.0.CO;2-B
  11. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T. Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 1999;35: 155-164. https://doi.org/10.1016/S0168-0102(99)00079-6
  12. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325: 253-257. https://doi.org/10.1038/325253a0
  13. Clark IA, Ilschner S, MacMicking JD, Cowden WB. TNF and Plasmodium berghei ANKA-induced cerebral malaria. Immunol Lett 1990; 25: 195-198. https://doi.org/10.1016/0165-2478(90)90114-6
  14. Na-bangchang K, Congpoung K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med 2007; 211: 99-113. https://doi.org/10.1620/tjem.211.99
  15. Ma N, Madigan MC, Chan-Ling T, Hunt NH. Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia 1997; 19: 135-151. https://doi.org/10.1002/(SICI)1098-1136(199702)19:2<135::AID-GLIA5>3.0.CO;2-#
  16. Blanco YC, Farias AS, Goelnitz U, Lopes SC, Arrais-Silva WW, Carvalho BO, Amino R, Wunderlich G, Santos LM, Giorgio S, Costa FT. Hyperbaric oxygen prevents early death caused by experimental cerebral malaria. PLoS ONE 2008; 3: e3126. https://doi.org/10.1371/journal.pone.0003126
  17. Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White N, Turner G. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25: 331-40. https://doi.org/10.1046/j.1365-2990.1999.00188.x
  18. Brown HC, Chau TT, Mai NT, Day NP, Sinh DX, White NJ, Hien TT, Farrar J, Turner GD. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000; 55:104-111. https://doi.org/10.1212/WNL.55.1.104
  19. Shibahara S, Kitamuro T, Takahashi K. Heme degradation and human disease: diversity is the soul of life. Antioxid Redox Signal 2002; 4: 593-602. https://doi.org/10.1089/15230860260220094
  20. Shibahara S. The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 2003; 200: 167-186. https://doi.org/10.1620/tjem.200.167
  21. Shibahara S, Han F, Li B, Takeda K. Hypoxia and heme oxygenases: Oxygen sensing and regulation of expression. Antiox Redox Signal 2007; 9: 2209-2225. https://doi.org/10.1089/ars.2007.1784
  22. Furuyama K, Kaneko K, Vargas PD. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 2007; 213: 1-16. https://doi.org/10.1620/tjem.213.1
  23. Kimpara T, Takeda A, Watanabe K, Itoyama Y, Ikawa S, Watanabe M, Arai H, Sasaki H, Higuchi S, Okita N, Takase S, Saito H, Takahashi K, Shibahara S. Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Hum Genet 1997; 100: 145-147. https://doi.org/10.1007/s004390050480
  24. Schluesener HJ, Kremsner PG, Meyermann R. Heme oxygenase-1 in lesions of human cerebral malaria. Acta Neuropathol 2001; 101: 65-68.
  25. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, Sasaki H. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000; 66: 187-195. https://doi.org/10.1086/302729
  26. Takeda M, Kikuchi M, Ubalee R, Na-Bangchang K, Ruangweerayut R, Shibahara S, Imai S, Hirayama K. Microsatellite polymorphism in the heme oxygenease-1 gene promoter is associated with susceptibility to cerebral malaria in Myanmar. Jpn J Infect Dis 2005; 58: 268-271.
  27. Zhuang H, Pin S, Li X, Dore' S. Regulation of heme oxygenase expression by cyclopentenone prostaglandins. Exp Biol Med 2003; 228: 499-505. https://doi.org/10.1177/15353702-0322805-13
  28. Kubata BK, Eguchi N, Urade Y, Yamashita K, Mitamura T, Tai K, Hayaishi O, Horii T. Plasmodium falciparum produces prostaglandins that are pyrogenic, somnogenic, and immunosuppressive substances in humans. J Exp Med 1998; 188: 1197-1202. https://doi.org/10.1084/jem.188.6.1197
  29. Eguchi N, Minami T, Shirafuji N, Kanaoka Y, Tanaka T, Nagata A, Yoshida N, Urade Y, Ito S, Hayashi O. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci USA 1999; 96: 726-730. https://doi.org/10.1073/pnas.96.2.726
  30. Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 2000; 1482: 259-271. https://doi.org/10.1016/S0167-4838(00)00161-8
  31. Urade Y, Fujimoto N, Hayaishi O. Purification and characterization of rat brain prostaglandin synthetase. J Biol Chem 1985; 260: 12410-12415.
  32. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 1995; 270: 18910-18916. https://doi.org/10.1074/jbc.270.32.18910
  33. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193: 255-261. https://doi.org/10.1084/jem.193.2.255
  34. Pettipher R, Hansel TT, Armer, R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov 2007; 6: 313-325. https://doi.org/10.1038/nrd2266
  35. Obata T, Nakano Y, Looareesuwan S, Ohtomo H, Aikawa M. Prostaglandin spectrum in falciparum malaria patients. International Congress Series 2002; 1233: 475-478. https://doi.org/10.1016/S0531-5131(02)00244-3
  36. Kuesap J, Li B, Satarug S, Takeda K, Numata I, Na-Bangchang K, Shibahara S. Prostaglandin D2 induces heme oxygenase-1 in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2008; 367: 413-419. https://doi.org/10.1016/j.bbrc.2007.12.148
  37. Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME. Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg 2006; 75: 790-797.
  38. Yoshida T, Biro P, Cohen T, Muller RM, Shibahara S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur J Biochem 1988; 171: 457-461. https://doi.org/10.1111/j.1432-1033.1988.tb13811.x
  39. McCoubrey Jr WK, Ewing JF, Maines MD. Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch Biochem Biophys 1992; 295: 13-20. https://doi.org/10.1016/0003-9861(92)90481-B
  40. Arcari P, Martinelli R, Salvatore F. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucleic Acids Res 1984; 12: 9179-9189. https://doi.org/10.1093/nar/12.23.9179
  41. Alvarez-Maqueda M, El Bekay R, Alba G, Monteseirin J, Chacon P, Vega A, Martin-Nieto J, Bedoya FJ, Pintado E, Sobrino F. 15-deoxy-delta 12,14-prostaglandin J2 induces heme oxygenase-1 gene expression in a reactive oxygen species-dependent manner in human lymphocytes. J Biol Chem 2004; 279: 21929-21937. https://doi.org/10.1074/jbc.M400492200
  42. Qin S, McLaughlin AP, De Vries GW. Protection of RPE cells from oxidative injury by 15-deoxy-delta12,14-prostaglandin J2 by augmenting GSH and activating MAPK. Invest Ophthalmol Vis Sci 2006; 47: 5098-5105. https://doi.org/10.1167/iovs.06-0318
  43. Kacem K, Lacombe P, Seylaz J, Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 1998; 23: 1-10. https://doi.org/10.1002/(SICI)1098-1136(199805)23:1<1::AID-GLIA1>3.0.CO;2-B
  44. Debault LE, Cancilla PA. Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 1979; 207: 653-655.
  45. Tontsch U, Bauer HC. Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells.Brain Res 1991; 539: 247-253. https://doi.org/10.1016/0006-8993(91)91628-E
  46. Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA. In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect 1998; 106: 131-158. https://doi.org/10.1289/ehp.98106s1131
  47. Viviani B, Corsini E, Galli CL, Padovani A, Ciusani E, Marinovich M. Dying neural cells activate glia through the release of a protease product. Glia 2000; 32: 84-90. https://doi.org/10.1002/1098-1136(200010)32:1<84::AID-GLIA80>3.0.CO;2-Q
  48. Lanz R, Polster P, Brune K. Antipyretic analgesics inhibit prostaglandin release from astrocytes and macrophages similarly. Eur J Pharmacol 1986; 130: 105-109. https://doi.org/10.1016/0014-2999(86)90188-3
  49. Tzeng S F, Hsiao HY, Mak OT. Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm 2005; 4: 335-340. https://doi.org/10.2174/1568010054022051
  50. Estrada C, Bready JV, Berliner JA, Pardridge WM, Cancilla PA. Astrocyte growth stimulation by a soluble factor produced by cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 1990; 49: 539-549. https://doi.org/10.1097/00005072-199011000-00001
  51. Sperri PE, Grant MB, Gomez J, Vernadakis A. Endothelial cell conditioned media mediated regulation of glutamine synthase activity in glial cells. Dev Brain Res 1997; 104: 205-208. https://doi.org/10.1016/S0165-3806(97)00173-9
  52. White NJ, Looareesuwan S, Warrell DA, Warrell MJ, Bunnag D, Harinasuta T. Quinine pharmacokinetics and toxicity in cerebral and uncomplicated falciparum malaria. Am J Med 1982; 73: 564-572. https://doi.org/10.1016/0002-9343(82)90337-0
  53. Brewer TG, Genovese RF, Newman DB, Li Q. Factors relating to neurotoxicity of artemisinin antimalarial drugs "listening to artemether". Med Trop 1998; 58: 22-27.
  54. Hoffman SL. Artemether in severe malaria-still too many deaths. N Engl J Med 1996; 335: 124-126. https://doi.org/10.1056/NEJM199607113350209
  55. Miller LG, Panosian CB. Ataxia and slurred speech after artesunate treatment for falciparum malaria. N Engl J Med 1997; 336: 1328 https://doi.org/10.1056/NEJM199705013361818
  56. Wesche DL, Da Coster MA, Tortella FC, Brewer TG. Neurotoxicity of artemisinin analogs in vitro. Antimicrob Agents Chemother 1994; 38: 1813-1819. https://doi.org/10.1128/AAC.38.8.1813
  57. Karbwang J, Tin T, Rimchala W, Sukontason K, Namsiripongpun V, Thanavibul A, Na-Bangchang K, Laothavorn P, Bunnag D, Harinasuta T. Comparison of artemether and quinine in the treatment of severe falciparum malaria in south-east Thailand. Trans R Soc Trop Med Hyg 1995; 89: 668-671. https://doi.org/10.1016/0035-9203(95)90437-9
  58. Phillips-Howard PA, ter Kuile FO. CNS adverse events associated with antimalarial agents: fact or fiction? Drug Safety 1995; 12: 370-383. https://doi.org/10.2165/00002018-199512060-00003
  59. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2: 86-98. https://doi.org/10.1602/neurorx.2.1.86
  60. Barraud LS, Fernandez C, German FM, Gantier JC, Gimenez F, Farinotti R. MDR1A (ABCB1) deficient CF-1 mutant mice is susceptible to cerebral malaria induced by Plasmodium berghei anka. J Parasitol 2008; 11: 1.
  61. Aarnoudse AL, van Schaik RH, Dieleman J, Molokhia M, van Riemsdijk MM, Ligthelm RJ, Overbosch D, van der Heiden IP, Stricker BH. MDR1 gene polymorphisms are associated with neuropsychiatric adverse effects of mefloquine. Clin Pharmacol Ther 2006; 80: 367-374. https://doi.org/10.1016/j.clpt.2006.07.003
  62. Sisodiya SM, Martinian L, Scheffer GL, van der Valk P, Scheper RJ, Harding BN, Thom M. Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol 2006; 32: 51-63. https://doi.org/10.1111/j.1365-2990.2005.00699.x
  63. Combes V, Coltel N, Faille D, Wassmer SC, Grau GE. Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Int J Parasitol 2006; 36: 541-546. https://doi.org/10.1016/j.ijpara.2006.02.005
  64. Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet 2001; 40: 343-373. https://doi.org/10.2165/00003088-200140050-00003

Cited by

  1. Study on association between genetic polymorphisms of haem oxygenase-1, tumour necrosis factor, cadmium exposure and malaria pathogenicity and severity vol.9, pp.None, 2010, https://doi.org/10.1186/1475-2875-9-260
  2. The role of heme-oxygenase-1 in pathogenesis of cerebral malaria in the co-culture model of human brain microvascular endothelial cell and ITG Plasmodium falciparum-infected red blood cells vol.10, pp.1, 2017, https://doi.org/10.1016/j.apjtm.2016.11.011
  3. Understanding host-parasite relationship: the immune central nervous system microenvironment and its effect on brain infections vol.145, pp.8, 2010, https://doi.org/10.1017/s0031182017002189
  4. Expression of 4-Hydroxynonenal (4-HNE) and Heme Oxygenase-1 (HO-1) in the Kidneys of Plasmodium berghei -Infected Mice vol.2020, pp.None, 2010, https://doi.org/10.1155/2020/8813654
  5. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance vol.16, pp.7, 2010, https://doi.org/10.1371/journal.ppat.1008599
  6. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.684005