
INTRODUCTION

Astrocytes are the most numerous cell types in the central ner-
vous system (CNS). They provide structural, trophic, and meta-
bolic support to neurons and modulate synaptic activity [1]. As-
trocytes were used in various studies involving in neurological
diseases [2-5]. These cells have the most direct interaction with
vasculature, and therefore their endfeet are in contact with cere-
bral endothelial cells (CECs) [6,7]. In vitro and in vivo studies
support the role of astrocytes in controlling blood-brain-barrier
(BBB) maintenance and regulation through their interaction with
CECs [8-12]. The neurological dysfunction caused by breakdown
of BBB thereby allowing compounds, such as histamine and re-
active oxygen species (ROS) to enter the brain, may lead to the
pathological changes in the brain [13]. 

Malaria is a worldwide protozoan infection [14], and most
malignant malaria is caused by Plasmodium falciparum. Cerebral
malaria is one of the most severe complications of P. falciparum

infection [15,16]. The parasite does not enter the brain parenchy-
ma, but staying in the intravascular circulation, which is responsi-
ble for changes in the BBB. Cerebral malaria is characterized by
a sequestration of parasitized red blood cells in the brain micro-
vasculature. The sequestration of these parasitized erythrocytes
could result in activation of cerebral endothelial cells [17]. Per-
ivascular macrophages (perivascular cells) are amongst the first
cells to encounter proteins leaking across a disrupted BBB, and
as a consequence of activation or phagocytosis, they may secre-
te a wide range of pro-inflammatory and neuroactive mediators
which could influence local neuronal functions. It has been re-
ported that, during cerebral malaria, the cerebral parenchyma is
not largely affected, and local events occur within and around
the cerebral microvasculature [18]. The molecular basis under-
lying cerebral malaria, nevertheless, remains unclear.

Recently, heme oxygenase (HO) has been proposed as one of
the factors that play significant roles in the pathogenesis of falci-
parum malaria complication [19,20]. It is a microsomal enzyme
which exists in 2 isoforms, i.e., HO-1 and HO-2. Heme oxyge-
nases are rate-limiting enzymes in heme catabolism to generate
biliverdin IXa/bilirubin IXa, carbon monoxide, and ferrous
iron [20-22]. The expression levels of HO-1 is inducible or repre-
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ssible, depending on cell types or cellular microenvironments,
but expression levels of HO-2 are fairly constant [20,22]. The
main regulation of heme catabolism is, therefore, determined by
the balance between induction and repression of HO-1.

HO-1 levels in the brain were studied in Alzheimer’s (AD),
Parkinson’s (PD), and infectious diseases, including malaria
[23,24]. It has been proposed that the mechanisms for the fine-
tuning of HO-1 expression may involve the polymorphic (GT)n

sequence (n = 15-40) located in the human HO-1 gene promo-
ter [23,25]. We have recently reported that the short (GT)n re-
peats (n < 28) in the HO-1 gene promoter are associated with
higher incidence of cerebral malaria in the Karen ethnic minor-
ity group who live near the border between Myanmar and Thai-
land [26]. 

Prostaglandins (PGs) originate from the degradation of mem-
brane arachidonic acid by cyclooxygenases (COX-1 and COX-
2). The prostaglandin actions in the nervous system have been
suggested to play a significant role in neurodegenerative disor-
ders [27] and to be involved in various symptoms associated
with parasitic diseases [28]. PGD2 is a major prostanoid produced
in the brain and is involved in the regulation of sleep and pain
responses [29,30]. Lipocalin-type PGD synthase (L-PGDS) cat-
alyzes the isomerization of PGH2 to produce PGD2, and is main-
ly responsible for production of PGD2 in the brain [30,31]. PGD2

exerts its actions through the G protein coupled receptors DP1
and chemoattractant-homologous receptor expressed on Th2
cells (CRTH2, also known as DP2) which are expressed in vari-
ous cell types [32-34]. 

In 1998, Kubata et al. [28] have shown that the cell homoge-
nates of P. falciparum contain the activity that produces PGD2

and PGE2 after incubation with arachidonic acid. Notably,
PGD2 was shown to be the predominant accumulate in the cul-
ture medium of the parasitized erythrocytes after treatment with
arachidonic acid [28]. Moreover, PGD2 was maintained at a hi-
gher level in the serum of falciparum malaria patients than the
control serum [35]. We previously reported that PGD2 and 15d-
PGJ2, a minor species of PGD2 metabolites, were found to increa-
se HO-1 gene promoter, mRNA levels, and protein levels in re-
tinal pigment epithelial cells that may associate with the pathoge-
nesis of malarial retinopathy in malaria patients with cerebral
complication [36,37]. 

In the present study, we provide additional data to support
the link between HO-1 and pathogenesis of cerebral malaria th-
rough the induction by PGD2 in human astrocytes. 

MATERIALS AND METHODS

Cell culture
The human astrocyte cell line, CCF-STTG1 was purchased

from American Type Culture Collection (CRL-1718, ATCC,
Virginia, USA). CCF-STTG1 cells were cultured in RPMI 1640
medium, supplemented with 10% fetal bovine serum (FBS), 2
mM L-glutamine and antibiotics (100 U/ml penicillin and 0.1
mg/ml streptomycin). To examine the effects of PGD2 and 15d-
PGJ2 (Cayman Chemicals, Michigan, USA) on the expression
levels of HO-1 protein and mRNA, CCF-STTG1 cells were grown
to 70-80% confluence before they were incubated with vehicle
(ethanol), PGD2 or 15d-PGJ2. 

Western blot analysis
Cells were lysed in the buffer containing 20 mM Hepes (pH

7.9), 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1.5 mM MgCl2,
1 mM DTT, 0.1% protease inhibitor cocktail (Sigma-Aldrich,
St. Louis, Missouri, USA) and 0.5% Nonidet P-40 (Fluka, Buchs,
Switzerland) [36]. The resultant lysates were centrifuged at
15,000 g for 5 min at 4℃ after incubation for 15 min, and
then supernatants were collected. Lysate supernatant proteins
(30 mg per lane) were fractionated by SDS-PAGE and blotted to
a nitrocellulose membrane (Hybond ECLTM, Amersham, New
Jersey, USA) in buffer containing 20% methanol, 48 mM Tris,
39 mM glycine, and 0.037% SDS. The membranes (Western
blots) were treated 1-2 hr in Tris-buffered saline (TBS), contain-
ing 5% non-fat dried milk, and were washed 3 times each for
10 min in TBS with 0.1% Tween 20 (TBS-T) at room tempera-
ture. The proteins were probed with HO-1 (SPA-895, StressGen
Biotechnologies) and HO-2 (SPA-897, StressGen Biotechnolo-
gies, Michigan, USA) antibodies, and b-actin antibody (Sigma)
at a dilution of 1 : 1,000 for 1 hr at room temperature. For detec-
tion of HO-1 and HO-2 proteins, the blots were incubated with
alkaline phosphatase (AP)-goat anti-rabbit antibodies (ZyMaxTM,
Invitrogen, California, USA), and b-actin protein was incubated
with AP-goat anti-mouse antibodies (ZyMaxTM, Invitrogen). The
color was developed by incubating the blot in the developing
solution, BCIP/NBT (AMRESCO, Ohio, USA ).

RNA extraction and RT-PCR 
Total RNA was extracted from treated CCF-STTG1 cells using

RNeasy� Mini Kit (Qiagen, Hilden, Germany). Total RNA was
transcribed to cDNA using Omniscript� RT Kit (Qiagen). Then,
HO-1 cDNA levels were determined by RT-PCR. Primers were
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designed according to the published cDNA sequences for human
HO-1 [38] and HO-2 [39]. The forward 5′-CAGGCAGAGAAT-
GCTGAG-3′and the reverse 5′-GCTTCACATAGCGCTGCA-3′

primers for HO-1 were used to amplify a 271-bp fragment, and
the forward 5′-ATGTCAGCGGAAGTGGAA-3′and the reverse
5′-GGGAGTTTCAGTGCTCGC-3′primers for HO-2 were used
to amplify a 533-bp fragment. The house-keeping gene, glycer-
aldehyde-3-phosphate dehydrogenase, was also amplified us-
ing the following primers 5′-TGAAGGTCGGAGTCAACGGAT-
TTG-3′and 5′-GCGCCAGTAGAGGCAGGGATGATG-3′, yiel-
ding a 628-bp product [40]. 

The cDNA template were amplified with an initial hold for 5
min at 95℃, followed by 40 cycles of denaturation at 95℃ for
15 sec, and  annealing/extension at 60℃ for 60 sec in iCycler
iQ real time PCR (Bio-Rad, California, USA). Relative HO-1
mRNA and HO-2 mRNA expression were obtained by dividing
the intensity value for each sample with 0-hr untreated control
culture cells, which reflected basal expression level (normalized
to 1.0) by using glyceraldehyde-3-phosphate dehydrogenase
for standardization. Data were analyzed in duplicate.

RESULTS

Effects of PGD2 on the expression of HO-1 and HO-2 pro-
teins in CCF-STTG1 cells  

We performed the time-course studies of the effects of PGD2

on the expression of HO-1 and HO-2 proteins in CCF-STTG1 at
3, 6, 12, and 24 hr, and dose-response studies of PGD2 at a final
concentration of 0.5, 1, 5, or 10 mM in CCF-STTG1 cells. Western

blot analysis revealed that the expression of HO-1 protein was
induced in a dose-dependent manner by PGD2 at a final concen-
tration of 5 and 10 mM after a 24-hr treatment (Fig. 1A). The a-
pparent induction of HO-1 protein was detected at 12 and 24 hr
with the concentration of PGD2 5 and 10 mM. In contrast, the ex-
pression level of HO-2 protein was unchanged or did not increa-
se after a 24-hr treatment with the highest concentration of PGD2

(10 mM). The expression of b-actin, an internal control was un-
changed. These results indicate that PGD2 induces the expres-
sion of HO-1 protein in CCF-STTG1 cells. 

Effects of 15d-PGJ2 on the expression of HO-1 and HO-2
proteins in CCF-STTG1 cells

It has been well established that 15d-PGJ2 increases transcrip-
tion of the HO-1 gene [36,41,42]. We, therefore, performed a
similar experiment with 15d-PGJ2 for comparison. As expected,
15d-PGJ2 induced the expression of HO-1 protein in a dose-
dependent and time-dependent manner in CCF-STTG1 cells (Fig.
1B). The apparent induction of HO-1 was detected after a 6-hr
treatment with 15d-PGJ2 (5 and 10 mM) (Fig. 1B). The onset of
the HO-1 induction with 15d-PGJ2 was earlier than that with P
GD2. HO-2 as well as b-actin protein levels remained unchang-
ed after treatment with 15d-PGJ2.

Increased expression of HO-1 mRNA in CCF-STTG1 cells
treated with PGD2 and 15d-PGJ2

We next performed the time-course and dose-response effects
of PGD2 and 15d-PGJ2 on the expression of HO-1 mRNA in C
CF-STTG1 cells using RT-PCR. The expression of HO-1 mRNA
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Fig. 1. Effects of PGD2 and 15dPGJ2 on HO-1 and HO-2 proteins in CCF-STTG1 cells. CCF-STTG1 human astrocyte cells were treated
with PGD2 (A) or 15d-PGJ2 (B) at final concentration 0.5, 1, 5, or 10 mM for the indicated time from 3 to 24 hr and then harvested for prepa-
ration of proteins. Shown are the Western blots used for HO-1 and HO-2 protein. Each lane contained 30 mg proteins prepared from CCF-
STTG1 cells. A bottom panel shows b-actin as an internal control. The data shown are from 1 of 2 independent experiments.
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was induced by PGD2 or 15d-PGJ2 in a dose-dependent manner
(Fig. 2). The expression levels of HO-1 mRNA were increased
after 6 hr of the treatment with PGD2 of 5 mM or 10 mM, and con-
tinuously increased at maximum levels after 12 hr (Fig. 2A). For
15d-PGJ2, the expression levels of HO-1 mRNA were detected
at 3 hr of treatment (Fig. 2C). The maximum induction of HO-
1 mRNA was achieved after 6 hr of treatment, but it was decreas-
ed at 24 hr (Fig. 2C). In contrast, HO-2 mRNA levels remained
unchanged in both of induction (Fig. 2B, D). The induction
profiles of HO-1 mRNA were in good agreement with those of
HO-1 protein (Fig. 1). 

DISCUSSION 

The astrocytes are known as cells surrounding cerebral endo-
thelial cells [43] that influence the BBB function [12,44,45] by
releasing cytokines and other soluble factors which may induce

adverse responses in surrounding neuronal tissues [46,47]. In
addition, astrocytes have the property to synthesize prostagland-
ins [48,49]. 

The endothelial cells also have a reciprocal inductive influence
on astrocytes [50,51]. Therefore, the astrocyte-endothelial inter-
action may be involved in the pathogenesis of encephalopathy
caused by P. falciparum. Most of the antimalarial agents used in
the treatment of cerebral malaria (quinine, artemether, artesu-
nate, and mefloquine) have been reported to cause neurotoxic-
ity [52-58]. The integrity of the BBB, including the functionality
of the cerebral efflux proteins, e.g., p-glycoproten (P-gp), multi-
drug resistant protein-1 (MRP1), or breast cancer resistant pro-
tein (BCRP) are therefore important factors in cerebral malaria
to control the cerebral transport and the neurotoxicity of these
drugs [59-62]. Nevertheless, little information is available regard-
ing the effects of alteration of BBB integrity in cerebral malaria
as well as interactions of antimalarial agents on antimalarial to-
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Fig. 2. Expression of HO-1 mRNA by PGD2 and 15dPGJ2 in CCF-STTG1 astrocyte cells. CCF-STTG1 cells were treated with PGD2 or 15d-
PGJ2 at final concentration 0.5, 1, 5, or 10 mM for the indicated time from 3 to 24 hr and then harvested for RNA preparation. cDNA were
prepared for RT-PCR using Platinum� SYBR� Green qPCR SuperMix-UDG cocktail (Invitrogen). Shown are representative of the relative
HO-1 mRNA and HO-2 mRNA expression of PGD2 (A, B) or 15d-PGJ2 (C, D) induction. The data were obtained by dividing the intensity
value for each sample with 0-hr untreated control cells, which reflected a basal expression level.
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xicity [14,17,63,64].
The present results showing that, the treatment of astrocyte

cells CCF-STTG1 with exogenous PGD2 consistently induced
HO-1 expression, is in agreement with our recent report in reti-
nal pigment epithelial cells [36]. Endogenously produced PGD2

by astrocyte cells may contribute to the appropriate expression
of HO-1 in the brain. The induction profile of HO-1 expression
with PGD2 is essentially similar to that with 15d-PGJ2, althou-
gh the onset of the induction by PGD2 is later than by 15d-PGJ2.
It remains to be explored whether PGD2 itself or a specific PGD2

metabolite, other than 15d-PGJ2, is responsible for the induc-
tion of HO-1 expression. Apart from astrocyte cells themselves,
falciparum parasites may also release PGD2 [28,48] that may has-
ten the expression of HO-1. This consequence additively results
in the increase in HO-1 activity to catalyze heme to end products,
especially, iron. Malaria growth and proliferation depend on ir-
on supply from host cells, such as endothelial cells or neuron
cells near the sequestration site. Therefore, PGD2 might enhance
the growth of parasites by modulating iron availability from the
host. The stimulation of HO-1 by PGD2 and the metabolite 15d-
PGJ2 observed in this study is critical since excessive heme degrad-
ation may result in toxic levels of iron similar to that by carbon
monoxide, and bilirubin/biliverdin.

Detailed studies are underway in order to provide evidence to
definitely conclude on the prostaglandin-mediated stimulatory
effects on HO-1 and its role in malaria pathogenesis. Prelimi-
nary studies showed significant findings. These include investi-
gation of (i) the mechanism of PGD2-mediated induction of HO-
1 expression in pigment epithelial cell lines (ARPE-19 and D407
RPE) in vitro, (ii) the production of PGD2 in P. falciparum cul-
ture in vitro, (iii) the growth inhibitory effects of the antagonists
of PGD2 receptors (DP1 and DP2 antagonists) on HUVEC cells
when cocultured with P. falciparum in vitro, and (iv) the associ-
ation between PGD2 levels and malaria pathogenesis in patients.
The knowledge on the link of the polymorphism of GT repeat
of HO-1 gene promoter in modulating the enzyme activity of
HO-1 and susceptibility to severe malaria may be exploited for
further development of new drugs acting as inhibitors of HO-1
to prevent the progression to severe cerebral malaria.
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