DOI QR코드

DOI QR Code

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Ryu, Onjeon (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kim, Do Gyeong (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Mabunga, Darine Froy (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Cho, Kyu Suk (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kim, Yujeong (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Han, Seol-Heui (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
  • Received : 2018.06.05
  • Accepted : 2018.07.03
  • Published : 2019.05.01

Abstract

Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.

Keywords

References

  1. Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53. https://doi.org/10.1038/nrn1824
  2. Ashcroft, G. S., Horan, M. A. and Ferguson, M. W. (1997) Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J. Invest. Dermatol. 108, 430-437. https://doi.org/10.1111/1523-1747.ep12289705
  3. Bachstetter, A. D., Xing, B., de Almeida, L., Dimayuga, E. R., Watterson, D. M. and Van Eldik, L. J. (2011) Microglial p38${\alpha}$ MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (A${\beta}$). J. Neuroinflammation 8, 79. https://doi.org/10.1186/1742-2094-8-79
  4. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D. and van Deursen, J. M. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189. https://doi.org/10.1038/nature16932
  5. Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., Johnson, F. B., Trojanowski, J. Q., Sell, C. and Torres, C. (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069. https://doi.org/10.1371/journal.pone.0045069
  6. Burke, D. M. and Mackay, D. G. (1997) Memory, language, and ageing. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 352, 1845-1856. https://doi.org/10.1098/rstb.1997.0170
  7. Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. and Gonzalez, B. (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484-2497. https://doi.org/10.1002/jnr.22074
  8. Chang, B. D., Swift, M. E., Shen, M., Fang, J., Broude, E. V. and Roninson, I. B. (2002) Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc. Natl. Acad. Sci. U.S.A. 99, 389-394. https://doi.org/10.1073/pnas.012602599
  9. Chinta, S. J., Woods, G., Rane, A., Demaria, M., Campisi, J. and Andersen, J. K. (2015) Cellular senescence and the aging brain. Exp. Gerontol. 68, 3-7. https://doi.org/10.1016/j.exger.2014.09.018
  10. Cho, K. S., Kwon, K. J., Jeon, S. J., Joo, S. H., Kim, K. C., Cheong, J. H., Bahn, G. H., Kim, H. Y., Han, S. H., Shin, C. Y. and Yang, S. I. (2013) Transcriptional upregulation of plasminogen activator inhibitor-1 in rat primary astrocytes by a proteasomal inhibitor MG132. Biomol. Ther. (Seoul) 21, 107-113. https://doi.org/10.4062/biomolther.2012.102
  11. Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y. and Campisi, J. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
  12. Correale, J. and Farez, M. F. (2015) The role of astrocytes in multiple sclerosis progression. Front. Neurol. 6, 180. https://doi.org/10.3389/fneur.2015.00180
  13. Cotrina, M. L. and Nedergaard, M. (2002) Astrocytes in the aging brain. J. Neurosci. Res. 67, 1-10. https://doi.org/10.1002/jnr.10121
  14. Dai, W., Zhou, J., Jin, B. and Pan, J. (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep. 6, 22622. https://doi.org/10.1038/srep22622
  15. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. and Toussaint, O. (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798-1806. https://doi.org/10.1038/nprot.2009.191
  16. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M. and Campisi, J. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  17. Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A. S. and Tainsky, M. A. (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23, 3173-3185. https://doi.org/10.1128/MCB.23.9.3173-3185.2003
  18. Elkhattouti, A., Hassan, M. and Gomez, C. R. (2015) Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front. Oncol. 5, 158.
  19. Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., Brewer, J. B. and Dale, A. M. (2009a) One-year brain atrophy evident in healthy aging. J. Neurosci. 29, 15223-15231. https://doi.org/10.1523/JNEUROSCI.3252-09.2009
  20. Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D. H., Greve, D. N., Fischl, B., Dale, A. M. and Walhovd, K. B. (2009b) High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 19, 2001-2012. https://doi.org/10.1093/cercor/bhn232
  21. Geng, Y. Q., Guan, J. T., Xu, X. H. and Fu, Y. C. (2010) Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem. Biophys. Res. Commun. 396, 866-869. https://doi.org/10.1016/j.bbrc.2010.05.011
  22. Grillari, J., Hohenwarter, O., Grabherr, R. M. and Katinger, H. (2000) Subtractive hybridization of mRNA from early passage and senescent endothelial cells. Exp. Gerontol. 35, 187-197. https://doi.org/10.1016/S0531-5565(00)00080-2
  23. Guo, S. and Dipietro, L. A. (2010) Factors affecting wound healing. J. Dent. Res. 89, 219-229. https://doi.org/10.1177/0022034509359125
  24. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  25. Hof, P. R. and Morrison, J. H. (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci. 27, 607-613. https://doi.org/10.1016/j.tins.2004.07.013
  26. Hou, J., Kim, S., Sung, C. and Choi, C. (2017) Ginsenoside Rg3 prevents oxidative stress-induced astrocytic senescence and ameliorates senescence paracrine effects on glioblastoma. Molecules 22, E1516. https://doi.org/10.3390/molecules22091516
  27. Kaiser, L. G., Schuff, N., Cashdollar, N. and Weiner, M. W. (2005) Agerelated glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol. Aging 26, 665-672. https://doi.org/10.1016/j.neurobiolaging.2004.07.001
  28. Keylock, K. T., Vieira, V. J., Wallig, M. A., DiPietro, L. A., Schrementi, M. and Woods, J. A. (2008) Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R179-R184. https://doi.org/10.1152/ajpregu.00177.2007
  29. Kim, B. S., Lee, C. H., Chang, G. E., Cheong, E. and Shin, I. (2016) A potent and selective small molecule inhibitor of sirtuin 1 promotes differentiation of pluripotent P19 cells into functional neurons. Sci. Rep. 6, 34324. https://doi.org/10.1038/srep34324
  30. Kim, J. N., Kim, M. K., Cho, K. S., Choi, C. S., Park, S. H., Yang, S. I., Joo, S. H., Park, J. H., Bahn, G., Shin, C. Y., Lee, H. J., Han, S. H. and Kwon, K. J. (2013) Valproic acid regulates alpha-synuclein expression through JNK pathway in rat primary astrocytes. Biomol. Ther. (Seoul) 21, 222-228. https://doi.org/10.4062/biomolther.2013.006
  31. Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J. and Peeper, D. S. (2008) Oncogene-induced senescence relayed by an interleukindependent inflammatory network. Cell 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
  32. Kuilman, T. and Peeper, D. S. (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81-94. https://doi.org/10.1038/nrc2560
  33. Kurz, D. J., Decary, S., Hong, Y. and Erusalimsky, J. D. (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613-3622. https://doi.org/10.1242/jcs.113.20.3613
  34. Lain, S., Hollick, J. J., Campbell, J., Staples, O. D., Higgins, M., Aoubala, M., McCarthy, A., Appleyard, V., Murray, K. E., Baker, L., Thompson, A., Mathers, J., Holland, S. J., Stark, M. J., Pass, G., Woods, J., Lane, D. P. and Westwood, N. J. (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454-463. https://doi.org/10.1016/j.ccr.2008.03.004
  35. Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., DiMaio, D. and Hwang, E. S. (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195. https://doi.org/10.1111/j.1474-9726.2006.00199.x
  36. Lee, C. S., Baek, J. and Han, S. Y. (2017) The Role of kinase modulators in cellular senescence for use in cancer treatment. Molecules 22, E1411. https://doi.org/10.3390/molecules22091411
  37. Maier, J. A., Voulalas, P., Roeder, D. and Maciag, T. (1990) Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249, 1570-1574. https://doi.org/10.1126/science.2218499
  38. Mercken, E. M., Mitchell, S. J., Martin-Montalvo, A., Minor, R. K., Almeida, M., Gomes, A. P., Scheibye-Knudsen, M., Palacios, H. H., Licata, J. J., Zhang, Y., Becker, K. G., Khraiwesh, H., Gonzalez-Reyes, J. A., Villalba, J. M., Baur, J. A., Elliott, P., Westphal, C., Vlasuk, G. P., Ellis, J. L., Sinclair, D. A., Bernier, M. and de Cabo, R. (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787-796. https://doi.org/10.1111/acel.12220
  39. Mitchell, S. J., Martin-Montalvo, A., Mercken, E. M., Palacios, H. H., Ward, T. M., Abulwerdi, G., Minor, R. K., Vlasuk, G. P., Ellis, J. L., Sinclair, D. A., Dawson, J., Allison, D. B., Zhang, Y., Becker, K. G., Bernier, M. and de Cabo, R. (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836-843. https://doi.org/10.1016/j.celrep.2014.01.031
  40. Munoz-Najar, U. and Sedivy, J. M. (2011) Epigenetic control of aging. Antioxid. Redox Signal. 14, 241-259. https://doi.org/10.1089/ars.2010.3250
  41. Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A. and Finch, C. E. (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14, 421-429. https://doi.org/10.1016/0197-4580(93)90100-P
  42. Ota, M., Yasuno, F., Ito, H., Seki, C., Nozaki, S., Asada, T. and Suhara, T. (2006) Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[beta-11C]DOPA. Life Sci. 79, 730-736. https://doi.org/10.1016/j.lfs.2006.02.017
  43. Palmer, A. K., Tchkonia, T., LeBrasseur, N. K., Chini, E. N., Xu, M. and Kirkland, J. L. (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289-2298. https://doi.org/10.2337/db14-1820
  44. Palmieri, D., Watson, J. M. and Rinehart, C. A. (1999) Age-related expression of PEDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp. Cell Res. 247, 142-147. https://doi.org/10.1006/excr.1998.4341
  45. Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., Schultzberg, M. and Bogdanovic, N. (2009) Blood-brain barrier alterations in ageing and dementia. J. Neurol. Sci. 283, 99-106. https://doi.org/10.1016/j.jns.2009.02.321
  46. Pospelova, T. V., Chitikova, Z. V. and Pospelov, V. A. (2013) An integrated approach for monitoring cell senescence. Methods Mol. Biol. 965, 383-408. https://doi.org/10.1007/978-1-62703-239-1_26
  47. Ressler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-Durr, P. and Wlaschek, M. (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379-389. https://doi.org/10.1111/j.1474-9726.2006.00231.x
  48. Sailasuta, N., Ernst, T. and Chang, L. (2008) Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn. Reson. Imaging 26, 667-675. https://doi.org/10.1016/j.mri.2007.06.007
  49. Salama, R., Sadaie, M., Hoare, M. and Narita, M. (2014) Cellular senescence and its effector programs. Genes Dev. 28, 99-114. https://doi.org/10.1101/gad.235184.113
  50. Sasaki, M., Ikeda, H., Sato, Y. and Nakanuma, Y. (2006) Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am. J. Pathol. 169, 831-845. https://doi.org/10.2353/ajpath.2006.051237
  51. Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., Yamada, K. A. and Imai, S. (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416-430. https://doi.org/10.1016/j.cmet.2013.07.013
  52. Saunders, L. R. and Verdin, E. (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489-5504. https://doi.org/10.1038/sj.onc.1210616
  53. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L. and Toga, A. W. (2003) Mapping cortical change across the human life span. Nat. Neurosci. 6, 309-315. https://doi.org/10.1038/nn1008
  54. van Deursen, J. M. (2014) The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193
  55. Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., Serrano, L., Sternglanz, R. and Reinberg, D. (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261. https://doi.org/10.1101/gad.1412706
  56. Verkhratsky, A. (2010) Physiology of neuronal-glial networking. Neurochem. Int. 57, 332-343. https://doi.org/10.1016/j.neuint.2010.02.002
  57. Wang, S., Moerman, E. J., Jones, R. A., Thweatt, R. and Goldstein, S. (1996) Characterization of IGFBP-3, PAI-1 and SPARC mRNA expression in senescent fibroblasts. Mech. Ageing Dev. 92, 121-132. https://doi.org/10.1016/S0047-6374(96)01814-3
  58. Wong, D. F., Wagner, H. N., Jr., Dannals, R. F., Links, J. M., Frost, J. J., Ravert, H. T., Wilson, A. A., Rosenbaum, A. E., Gjedde, A., Douglass, K. H. et al. (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226, 1393-1396. https://doi.org/10.1126/science.6334363
  59. Xie, Z., Morgan, T. E., Rozovsky, I. and Finch, C. E. (2003) Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity. Exp. Neurol. 182, 135-141. https://doi.org/10.1016/S0014-4886(03)00057-8
  60. Zeevi, N., Pachter, J., McCullough, L. D., Wolfson, L. and Kuchel, G. A. (2010) The blood-brain barrier: geriatric relevance of a critical brain-body interface. J. Am. Geriatr. Soc. 58, 1749-1757. https://doi.org/10.1111/j.1532-5415.2010.03011.x
  61. Zhu, L., Yu, J., Shi, Q., Lu, W., Liu, B., Xu, S., Wang, L., Han, J. and Wang, X. (2011) Strain- and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice. J. Alzheimers Dis. 23, 641-654. https://doi.org/10.3233/JAD-2010-101389
  62. Zou, Y., Zhang, N., Ellerby, L. M., Davalos, A. R., Zeng, X., Campisi, J. and Desprez, P. Y. (2012) Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem. Biophys. Res. Commun. 426, 100-105. https://doi.org/10.1016/j.bbrc.2012.08.043

Cited by

  1. Cellular Senescence in Brain Aging vol.13, 2019, https://doi.org/10.3389/fnagi.2021.646924
  2. Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells vol.29, pp.2, 2019, https://doi.org/10.4062/biomolther.2020.175
  3. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting vol.67, 2021, https://doi.org/10.1016/j.arr.2021.101312