• Title/Summary/Keyword: block-coordinate method

Search Result 37, Processing Time 0.036 seconds

Block-Coordinate Gauss-Newton Optimization for Image Registration (영상 정합을 위한 Block-Coordinate Gauss-Newton 최적화)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, research on joint optimization of the image spatial registration and the exposure compensation is conducted. The exposure compensation is performed in a frame work of the intensity compensation based on the polynomial approximation of the relationship between images. This compensation is jointly combined with the registration problem employing the Gauss-Newton nonlinear optimization method. In this paper, to perform for a simple and stable optimization, the block-coordinate method is combined with the Gauss-Newton optimization and extensively compared with the traditional approaches. Furthermore, regression analysis is considered in the compensation part for a better stable performance. By combining the block-coordinate method with the Gauss-Newton optimization, we can obtain a compatible performance reducing the computational complexity and stabilizing the performance. In the numerical result for a particular image, we obtain a satisfactory result for 10 repeats of the iteration, which implies a 50% reduction of the computational complexity. The error is also further reduced by 1.5dB compared to the ordinary method.

Motion Tracking Algorithm for A CCTV System (CCTV 시스템을 위한 움직임 추적 기법)

  • Kang, Seoung-Il;Hong, Sung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.295-296
    • /
    • 2006
  • This paper implements a method that tracking the moving objects that detected by the motion detection function of the digital CCTV system. We simply implement the motion detection function of the digital CCTV system that use frame difference and thresholding. When motion is detected, the motion detection function generates two outputs. One output is the event that the motion is arised in input image frame. The other output is coordinate that motion is exists. Then, do the block matching algorithm[2] using coordinate, that motion is exists, as initial coordinate of the block matching algorithm. The best matched coordinate is new initial coordinate of the block matching algorithm for the next image frame. We simply use the block matching algorithm that implements tracking the moving objects. It is simple, but useful the actual digital CCTV system.

  • PDF

Block Coordinate Descent (BCD)-based Decentralized Method for Joint Dispatch of Regional Electricity Markets (BCD 기반 분산처리 기법을 이용한 연계전력시장 최적화)

  • Moon, Guk-Hyun;Joo, Sung-Kwan;Huang, Anni
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.23-27
    • /
    • 2009
  • The joint dispatch of regional electricity markets can improve the overall economic efficiency of interconnected markets by increasing the combined social welfare of the interconnected markets. This paper presents a new decentralized optimization technique based on Augmented Lagrangian Relaxation (ALR) to perform the joint dispatch of interconnected electricity markets. The Block Coordinate Descent (BCD) technique is applied to decompose the inseparable quadratic term of the augmented Lagrangian equation into individual market optimization problems. The Interior Point/Cutting Plane (IP/CP) method is used to update the Lagrangian multiplier in the decomposed market optimization problem. The numerical example is presented to validate the effectiveness of the proposed decentralized method.

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.

Efficient Solving Methods Exploiting Sparsity of Matrix in Real-Time Multibody Dynamic Simulation with Relative Coordinate Formulation

  • Choi, Gyoojae;Yoo, Yungmyun;Im, Jongsoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1090-1096
    • /
    • 2001
  • In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves the η$\times$η sparse coefficient matrix for the accelerations, where η denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimension η$\times$η to an equivalent problem of dimension 6$\times$6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.

  • PDF

Numerical Prediction of Incompressible Flows Using a Multi-Block Finite Volume Method on a Parellel Computer (병렬 컴퓨터에서 다중블록 유한체적법을 이용한 비압축성 유동해석)

  • Kang, Dong-Jin;Sohn, Jeong-Lak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.72-80
    • /
    • 1998
  • Computational analysis of incompressible flows by numerically solving Navier-Stokes equations using multi-block finite volume method is conducted on a parallel computing system. Numerical algorithms adopted in this study $include^{(1)}$ QUICK upwinding scheme for convective $terms,^{(2)}$ central differencing for other terms $and^{(3)}$ the second-order Euler differencing for time-marching procedure. Structured grids are used on the body-fitted coordinate with multi-block concept which uses overlaid grids on the block-interfacing boundaries. Computational code is parallelized on the MPI environment. Numerical accuracy of the computational method is verified by solving a benchmark test case of the flow inside two-dimensional rectangular cavity. Computation in the axial compressor cascade is conducted by using 4 PE's md, as results, no numerical instabilities are observed and it is expected that the present computational method can be applied to the turbomachinery flow problems without major difficulties.

  • PDF

Unknown Inputs Observer Design Via Block Pulse Functions

  • Ahn, Pius
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.205-211
    • /
    • 2002
  • Unknown inputs observer(UIO) which is achieved by the coordinate transformation method has the differential of system outputs in the observer and the equation for unknown inputs estimation. Generally, the differential of system outputs in the observer can be eliminated by defining a new variable. But it brings about the partition of the observer into two subsystems and need of an additional differential of system outputs still remained to estimate the unknown inputs. Therefore, the block pulse function expansions and its differential operation which is a newly derived in this paper are presented to alleviate such problems from an algebraic form.

Study on Robot Calibration Using Multi-measurement Coordinate System (다중 측정 좌표계를 이용한 로봇 캘리브레이션 방법 연구)

  • Lim, Saeng-Ki;Kim, Jung-Tae;Borm, Jin-Hwan;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.164-173
    • /
    • 1999
  • Robot calibration needs accurate measurements of robot end-effector position at a number of different robot configurations. One of the efficient ways of the measurement is "Touching on Jig" method suggested in [7], which utilizes a touch sensor and a fixture consisting of various sizes of blocks. By moving the end-effector to touch the surface of a block whose position relative to the other is known, the end-effector position relative to the fixture coordinate system can be obtained at the instant of touching. However, the global size of fixture is too small to cover the various configurations of the robot. Because of the manufacturing difficulties, the fixture cannot be manufactured large enough for well distributed position measurement. It results in the improvement of robot accuracy only in the limited space near to the fixture rather than over the whole space of the robot working volume. The paper proposes a method to resolve the above problem by measuring the end-effector positions with respect to several different coordinate system using the same measurement devices. It is found that the proposed method leads the improvements of robot position accuracy over the large space of working volume. The experimental studies are performed to show the validity of the method and their results are discussed.

  • PDF

A Study on the Precise Surveying Technique by Terrestrial Photogrammetry (지상사진측량(地上寫眞測量)에 의한 정밀측량기법(精密測量技法)의 연구(硏究))

  • Kang, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.91-98
    • /
    • 1989
  • The analysis of a single stereo model is not sufficient in applying for some large structures, therefore the precise coordinate analysis photogrammetric block adjustment method should be considered. The distribution of control points has a great influence on the error characteristics of the block adjustment results. Thus, the unit model method is applied to the photogrammentric adjustment procedure to study error characterestics with different distributions of control points. Through this study, the second order polynomial equations about bridging distance and plane error are developed in block adjustment of terrestrial photogrammetry. Comparing the block adjustment method and a single model method, root mean square error of the block adjustment method is 0.44mm, and a single model method is 1.06mm.

  • PDF

Signatures Verification by Using Nonlinear Quantization Histogram Based on Polar Coordinate of Multidimensional Adjacent Pixel Intensity Difference (다차원 인접화소 간 명암차의 극좌표 기반 비선형 양자화 히스토그램에 의한 서명인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2016
  • In this paper, we presents a signatures verification by using the nonlinear quantization histogram of polar coordinate based on multi-dimensional adjacent pixel intensity difference. The multi-dimensional adjacent pixel intensity difference is calculated from an intensity difference between a pair of pixels in a horizontal, vertical, diagonal, and opposite diagonal directions centering around the reference pixel. The polar coordinate is converted from the rectangular coordinate by making a pair of horizontal and vertical difference, and diagonal and opposite diagonal difference, respectively. The nonlinear quantization histogram is also calculated from nonuniformly quantizing the polar coordinate value by using the Lloyd algorithm, which is the recursive method. The polar coordinate histogram of 4-directional intensity difference is applied not only for more considering the corelation between pixels but also for reducing the calculation load by decreasing the number of histogram. The nonlinear quantization is also applied not only to still more reflect an attribute of intensity variations between pixels but also to obtain the low level histogram. The proposed method has been applied to verified 90(3 persons * 30 signatures/person) images of 256*256 pixels based on a matching measures of city-block, Euclidean, ordinal value, and normalized cross-correlation coefficient. The experimental results show that the proposed method has a superior to the linear quantization histogram, and Euclidean distance is also the optimal matching measure.