• 제목/요약/키워드: block learning

검색결과 314건 처리시간 0.027초

얼굴 인식률 향상을 위한 멀티 블록 방식의 딥러닝 구조에 관한 연구 (A Study on Deep Learning Structure of Multi-Block Method for Improving Face Recognition)

  • 라승탁;김홍직;이승호
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.933-940
    • /
    • 2018
  • 본 논문에서는 얼굴 인식률 향상을 위한 멀티 블록 방식의 딥러닝 구조를 제안한다. 제안하는 딥러닝의 인식 구조는 입력된 이미지의 멀티 블록화, 특징 수치 분석을 통한 멀티 블록 선정, 선정된 멀티 블록의 딥러닝 수행 등의 3가지 과정으로 구성된다. 첫 번째로 입력된 이미지의 멀티 블록화는 입력된 이미지를 4등분하여 멀티 블록화 시킨다. 두 번째로 특징 수치분석을 통한 멀티 블록 선정에서는 4등분된 멀티 블록들의 특징 수치를 확인하고 특징이 많이 부각되는 블록만을 선정하여 얼굴 인식에 방해가 되는 요소를 사전에 제거한 블록들을 선정한다. 세 번째로 선정된 멀티 블록으로 딥러닝 수행은 선정된 멀티 블록 부위가 학습되어진 딥러닝 모델에 인식을 수행하여 특징 수치가 높은 효율적인 블록으로 얼굴 인식의 결과를 도출한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 CAS-PEAL 얼굴 데이터베이스를 사용하여 실험 하였다. 실험 결과, 제안하는 멀티 블록 방식의 딥러닝 구조가 기존의 딥러닝 구조보다 평균 약 2.3% 향상된 얼굴 인식률을 나타내어 그 효용성이 입증됨을 확인하였다.

블록형 프로그래밍 학습에서 텍스트형 프로그래밍 학습으로의 전이 (Transference from learning block type programming to learning text type programming)

  • 소미현;김자미
    • 컴퓨터교육학회논문지
    • /
    • 제19권6호
    • /
    • pp.55-68
    • /
    • 2016
  • 2015 개정 정보과 교육과정에서는 문제해결과 프로그래밍 단원을 나선형으로 조직하면서 학교급 별로 블록형과 텍스트형 프로그래밍 언어의 사용을 제안하였다. 본 연구는 프로그래밍 학습에서 알고리즘 작성이 프로그래밍 학습에 도움을 주는지, 블록형 프로그래밍 학습이 텍스트형 프로그래밍 후행학습에 긍정적 전이효과가 있는지를 확인하기 위한 목적으로 진행되었다. 목적 달성을 위해 초등학생 15명을 대상으로 블록형과 텍스트형 프로그래밍 학습을 진행하였다. 연구 결과, 한정된 방법으로 알고리즘을 작성하는 것은 학습자들의 사고 표현을 가로막을 수 있지만 블록형 프로그래밍 학습은 텍스트형 프로그래밍 학습에 긍정적 전이가 있음을 확인하였다. 본 연구는 초등학교부터 계열성 있는 프로그래밍 교육을 위한 방안을 제시하였다는 것에 의의가 있다.

머신러닝을 위한 블록형 모듈화 아키텍처 설계 (Design of Block-based Modularity Architecture for Machine Learning)

  • 오유수
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.476-482
    • /
    • 2020
  • In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.

의사결정트리 학습을 적용한 조선소 블록 적치 위치 선정에 관한 연구 (A Study on Selection of Block Stockyard Applying Decision Tree Learning Algorithm)

  • 남병욱;이경호;이재준;문승환
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.421-429
    • /
    • 2017
  • It is very important to manage the position of the blocks in the shipyard where the work is completed, or the blocks need to be moved for the next process operation. The moving distance of the block increases according to the position of the block stockyard. As the travel distance increases, the number of trips and travel distance of the transporter increases, which causes a great deal of operation cost. Currently, the selection of the block position in the shipyard is based on the know-how of picking up a transporter worker by the production schedule of the block, and the location where the block is to be placed is determined according to the situation in the stockyard. The know-how to select the position of the block is the result of optimizing the position of the block in the shipyard for a long time. In this study, we used the accumulated data as a result of the operation of the yard in the shipyard and tried to select the location of blocks by learning it. Decision tree learning algorithm was used for learning, and a prototype was developed using it. Finally, we prove the possibility of selecting a block stockyard through this algorithm.

Best Practice of Gamification in Block Coding Learning Platform based on Virtual Reality

  • Seo Yeon Hong;Hyeon-A Park;Ji Yeong Choe;Mi Seo Choi;Janghwan Kim;R. Young Chul Kim;Chaeyun Seo
    • International Journal of Advanced Culture Technology
    • /
    • 제12권3호
    • /
    • pp.419-426
    • /
    • 2024
  • Due to the government's announcement of the 2025 policy mandating coding education, there is a growing need for effective coding learning methods in elementary education. However, there are few methods available that can easily help younger students understand coding. While text-based coding and visual block coding methods exist, they have limitations. To address these issues, we propose a block coding learning platform that combines virtual reality (VR) technology with gamification elements. The traditional two dimensional (2D) block coding methods have some limitations, so this platform aims to overcome these by providing an environment where learners can intuitively understand and experience coding in a three dimensional (3D) virtual space. The primary goal is to enhance immersive, learner-centered experiences and improve creative problem-solving skills and computational thinking. This study proposes an experimental approach to demonstrate the effectiveness of a learning platform that combines VR technology with block coding. Furthermore, we expect that the VR-based platform will significantly contribute to improving the quality of education and promoting self-directed learning among students.

딥블록: 웹 기반 딥러닝 교육용 플랫폼 (DeepBlock: Web-based Deep Learning Education Platform)

  • 조진성;김근모;고현민;김성민;김지섭;김봉재
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.43-50
    • /
    • 2021
  • 최근 인공지능을 사용한 연구나 기업의 프로젝트가 활발하게 이루어지고 다양한 서비스나 시스템이 인공지능 기술과 접목되어 점점 더 지능화되고 있다. 이에 따라 인공지능의 기법 중 하나인 딥러닝에 대한 관심과 이를 학습하려는 사람들이 증가했다. 딥러닝을 학습하기 위해서는 딥러닝 이론 이외에도 컴퓨터 프로그래밍, 수식 등 많은 지식들이 요구된다. 이는 초심자에게 높은 진입장벽으로 작용한다. 따라서 본 연구에서는 초심자가 프로그래밍 및 수식 등을 고려하지 않고 DNN, CNN 등과 같은 딥러닝의 기본적인 모델을 구현할 수 있는 DeepBlock이라는 웹 기반 교육용 딥러닝 플랫폼을 설계 및 구현하였다. 제안한 DeepBlock을 이용하여 딥러닝에 관심을 가진 학생들이나 초심자들의 교육에 활용이 가능하다.

블록체인을 활용한 양질의 기계학습용 데이터 수집 방안 연구 (High-quality data collection for machine learning using block chain)

  • 김영랑;우정훈;이재환;신지선
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.13-19
    • /
    • 2019
  • 기계학습의 정확도는 학습용 데이터의 양과 데이터의 품질에 많은 영향을 받는다. 기존의 웹을 기반으로 학습용 데이터를 수집하는 것은 실제 학습과 무관한 데이터가 수집 될 수 있는 위험성이 있으며 데이터의 투명성을 보장할 수가 없다. 본 논문에서는 블록체인구조에서 블록들이 직접 병렬적으로 데이터를 수집하게 하고 각 블록들이 수집한 데이터를 타 블록의 데이터와 비교하여 양질의 데이터만을 선별하는 방안을 제안한다. 제안하는 시스템은 각 블록들은 데이터를 서로 블록체인을 통해 공유하며 All-reduce 구조의 Parallel-SGD를 활용하여 다른 블록들의 데이터와 비교를 통해 양질의 데이터만을 선별하여 학습용 데이터셋을 구성할 수가 있다. 또한 본 논문에서는 제안한 구조의 성능을 확인하기 위해 실험을 통해 기존의 벤치마크용 데이터셋의 이미지를 활용하여 변조된 이미지 사이에서 원본 이미지만을 양질의 데이터로 판별함을 확인하였다.

Stacking Ensemble Learning을 활용한 블록 탑재 시수 예측 (A Study on the Work-time Estimation for Block Erections Using Stacking Ensemble Learning)

  • 권혁천;유원선
    • 대한조선학회논문집
    • /
    • 제56권6호
    • /
    • pp.488-496
    • /
    • 2019
  • The estimation of block erection work time at a dock is one of the important factors when establishing or managing the total shipbuilding schedule. In order to predict the work time, it is a natural approach that the existing block erection data would be used to solve the problem. Generally the work time per unit is the product of coefficient value, quantity, and product value. Previously, the work time per unit is determined statistically by unit load data. However, we estimate the work time per unit through work time coefficient value from series ships using machine learning. In machine learning, the outcome depends mainly on how the training data is organized. Therefore, in this study, we use 'Feature Engineering' to determine which one should be used as features, and to check their influence on the result. In order to get the coefficient value of each block, we try to solve this problem through the Ensemble learning methods which is actively used nowadays. Among the many techniques of Ensemble learning, the final model is constructed by Stacking Ensemble techniques, consisting of the existing Ensemble models (Decision Tree, Random Forest, Gradient Boost, Square Loss Gradient Boost, XG Boost), and the accuracy is maximized by selecting three candidates among all models. Finally, the results of this study are verified by the predicted total work time for one ship among the same series.

번호판 화질 개선을 위한 국부 블록 학습 기반의 초해상도 복원 알고리즘 (Local Block Learning based Super resolution for license plate)

  • 신현학;정대성;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.71-77
    • /
    • 2011
  • 본 논문에서는 번호판 인식 시스템에서 번호판 영상의 화질 개선을 위하여 국부 블록(Local block : LB) 학습기반의 초해상도 알고리즘을 제안한다. 본 논문에서 국부 블록은 영상 내에서 정보를 담고 있는 최소 단위로 정의하였으며, 학습의 기본 단위가 된다. 제안된 방법은 먼저 다양한 환경에 적합한 훈련 국부 블록 set을 생성하였다. 훈련 국부 블록 set은 고해상도 국부 블록과 저해상도 국부 블록의 순서쌍으로 구성되며 다양한 크기의 번호판과 열화 영상에 대응하기 위하여 다양한 크기와 열화를 갖는 저해상도 국부 블록 훈련 set을 구성하였다. 그 다음으로는 저해상도 입력 영상에서 복원해야할 정보를 훈련 국부 블록 set에서 추출/융합하는 과정을 제안하였다. 모의 실험결과, 열화된 저해상도 번호판 영상에 대해 제안한 방법이 효과적인 복원 성능을 나타내는 것을 확인할 수 있었다.

SMS 무들 블록 개발 (Development of a SMS Moodle Block)

  • 박종대;장진훈
    • 자연과학논문집
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2008
  • A SMS Moodle plug-in block was developed for the Pai-Chai Moodle virtual learning environment. Professors can send SMS messages directly from their courses by using the SMS block. NuSOAP open source web service library was utilized for XML SOAP based message transfer.

  • PDF