• Title/Summary/Keyword: block learning

Search Result 322, Processing Time 0.031 seconds

A Study on Deep Learning Structure of Multi-Block Method for Improving Face Recognition (얼굴 인식률 향상을 위한 멀티 블록 방식의 딥러닝 구조에 관한 연구)

  • Ra, Seung-Tak;Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.933-940
    • /
    • 2018
  • In this paper, we propose a multi-block deep learning structure for improving face recognition rate. The recognition structure of the proposed deep learning consists of three steps: multi-blocking of the input image, multi-block selection by facial feature numerical analysis, and perform deep learning of the selected multi-block. First, the input image is divided into 4 blocks by multi-block. Secondly, in the multi-block selection by feature analysis, the feature values of the quadruple multi-blocks are checked, and only the blocks with many features are selected. The third step is to perform deep learning with the selected multi-block, and the result is obtained as an efficient block with high feature value by performing recognition on the deep learning model in which the selected multi-block part is learned. To evaluate the performance of the proposed deep learning structure, we used CAS-PEAL face database. Experimental results show that the proposed multi-block deep learning structure shows 2.3% higher face recognition rate than the existing deep learning structure.

Transference from learning block type programming to learning text type programming (블록형 프로그래밍 학습에서 텍스트형 프로그래밍 학습으로의 전이)

  • So, MiHyun;Kim, JaMee
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.6
    • /
    • pp.55-68
    • /
    • 2016
  • Informatics curriculum revised 2015 proposed the use of block type and text type of programming language by organizing problem solving and the programming unit in a spiral. The purpose of this study is to find out whether the algorithms helps programming learning and whether there is a positive transition effect in block type programming learning to text type programming trailing learning. For 15 elementary school students was conducted block type and text type programming learning. As a result of the research, it is confirmed that writing the algorithm in a limited way can interfere with the learner's expression of thinking, but the block type programming learning has a positive transition to the text type programming learning. This study is meaningful that it suggested a plan for the programming education which is sequential from elementary school.

Design of Block-based Modularity Architecture for Machine Learning (머신러닝을 위한 블록형 모듈화 아키텍처 설계)

  • Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.476-482
    • /
    • 2020
  • In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.

A Study on Selection of Block Stockyard Applying Decision Tree Learning Algorithm (의사결정트리 학습을 적용한 조선소 블록 적치 위치 선정에 관한 연구)

  • Nam, Byeong-Wook;Lee, Kyung-Ho;Lee, Jae-Joon;Mun, Seung-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.421-429
    • /
    • 2017
  • It is very important to manage the position of the blocks in the shipyard where the work is completed, or the blocks need to be moved for the next process operation. The moving distance of the block increases according to the position of the block stockyard. As the travel distance increases, the number of trips and travel distance of the transporter increases, which causes a great deal of operation cost. Currently, the selection of the block position in the shipyard is based on the know-how of picking up a transporter worker by the production schedule of the block, and the location where the block is to be placed is determined according to the situation in the stockyard. The know-how to select the position of the block is the result of optimizing the position of the block in the shipyard for a long time. In this study, we used the accumulated data as a result of the operation of the yard in the shipyard and tried to select the location of blocks by learning it. Decision tree learning algorithm was used for learning, and a prototype was developed using it. Finally, we prove the possibility of selecting a block stockyard through this algorithm.

Best Practice of Gamification in Block Coding Learning Platform based on Virtual Reality

  • Seo Yeon Hong;Hyeon-A Park;Ji Yeong Choe;Mi Seo Choi;Janghwan Kim;R. Young Chul Kim;Chaeyun Seo
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.419-426
    • /
    • 2024
  • Due to the government's announcement of the 2025 policy mandating coding education, there is a growing need for effective coding learning methods in elementary education. However, there are few methods available that can easily help younger students understand coding. While text-based coding and visual block coding methods exist, they have limitations. To address these issues, we propose a block coding learning platform that combines virtual reality (VR) technology with gamification elements. The traditional two dimensional (2D) block coding methods have some limitations, so this platform aims to overcome these by providing an environment where learners can intuitively understand and experience coding in a three dimensional (3D) virtual space. The primary goal is to enhance immersive, learner-centered experiences and improve creative problem-solving skills and computational thinking. This study proposes an experimental approach to demonstrate the effectiveness of a learning platform that combines VR technology with block coding. Furthermore, we expect that the VR-based platform will significantly contribute to improving the quality of education and promoting self-directed learning among students.

DeepBlock: Web-based Deep Learning Education Platform (딥블록: 웹 기반 딥러닝 교육용 플랫폼)

  • Cho, Jinsung;Kim, Geunmo;Go, Hyunmin;Kim, Sungmin;Kim, Jisub;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • Recently, researches and projects of companies based on artificial intelligence have been actively carried out. Various services and systems are being grafted with artificial intelligence technology. They become more intelligent. Accordingly, interest in deep learning, one of the techniques of artificial intelligence, and people who want to learn it have increased. In order to learn deep learning, deep learning theory with a lot of knowledge such as computer programming and mathematics is required. That is a high barrier to entry to beginners. Therefore, in this study, we designed and implemented a web-based deep learning platform called DeepBlock, which enables beginners to implement basic models of deep learning such as DNN and CNN without considering programming and mathematics. The proposed DeepBlock can be used for the education of students or beginners interested in deep learning.

High-quality data collection for machine learning using block chain (블록체인을 활용한 양질의 기계학습용 데이터 수집 방안 연구)

  • Kim, Youngrang;Woo, Junghoon;Lee, Jaehwan;Shin, Ji Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • The accuracy of machine learning is greatly affected by amount of learning data and quality of data. Collecting existing Web-based learning data has danger that data unrelated to actual learning can be collected, and it is impossible to secure data transparency. In this paper, we propose a method for collecting data directly in parallel by blocks in a block - chain structure, and comparing the data collected by each block with data in other blocks to select only good data. In the proposed system, each block shares data with each other through a chain of blocks, utilizes the All-reduce structure of Parallel-SGD to select only good quality data through comparison with other block data to construct a learning data set. Also, in order to verify the performance of the proposed architecture, we verify that the original image is only good data among the modulated images using the existing benchmark data set.

A Study on the Work-time Estimation for Block Erections Using Stacking Ensemble Learning (Stacking Ensemble Learning을 활용한 블록 탑재 시수 예측)

  • Kwon, Hyukcheon;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.488-496
    • /
    • 2019
  • The estimation of block erection work time at a dock is one of the important factors when establishing or managing the total shipbuilding schedule. In order to predict the work time, it is a natural approach that the existing block erection data would be used to solve the problem. Generally the work time per unit is the product of coefficient value, quantity, and product value. Previously, the work time per unit is determined statistically by unit load data. However, we estimate the work time per unit through work time coefficient value from series ships using machine learning. In machine learning, the outcome depends mainly on how the training data is organized. Therefore, in this study, we use 'Feature Engineering' to determine which one should be used as features, and to check their influence on the result. In order to get the coefficient value of each block, we try to solve this problem through the Ensemble learning methods which is actively used nowadays. Among the many techniques of Ensemble learning, the final model is constructed by Stacking Ensemble techniques, consisting of the existing Ensemble models (Decision Tree, Random Forest, Gradient Boost, Square Loss Gradient Boost, XG Boost), and the accuracy is maximized by selecting three candidates among all models. Finally, the results of this study are verified by the predicted total work time for one ship among the same series.

Local Block Learning based Super resolution for license plate (번호판 화질 개선을 위한 국부 블록 학습 기반의 초해상도 복원 알고리즘)

  • Shin, Hyun-Hak;Chung, Dae-Sung;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper, we propose a learning based super resolution algorithm using local block for image enhancement of vehicle license plate. Local block is defined as the minimum measure of block size containing the associative information in the image. Proposed method essentially generates appropriate local block sets suitable for various imaging conditions. In particular, local block training set is first constructed as ordered pair between high resolution local block and low resolution local block. We then generate low resolution local block training set of various size and blur conditions for matching to all possible blur condition of vehicle license plates. Finally, we perform association and merging of information to reconstruct into enhanced form of image from training local block sets. Representative experiments demonstrate the effectiveness of the proposed algorithm.

Development of a SMS Moodle Block (SMS 무들 블록 개발)

  • Park, Jong-Dae;Jang, Jin-Hoon
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • A SMS Moodle plug-in block was developed for the Pai-Chai Moodle virtual learning environment. Professors can send SMS messages directly from their courses by using the SMS block. NuSOAP open source web service library was utilized for XML SOAP based message transfer.

  • PDF