• Title/Summary/Keyword: bivariate distribution

Search Result 210, Processing Time 0.027 seconds

Statistical Inferences for Bivariare Exponential Distribution in Reliability and Life Testing Problems

  • PARK, BYUNG-GU
    • Journal of Korean Society for Quality Management
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1985
  • In this paper, statistical estimation of the parameters of the bivariate exponential distribution are studied. Bayes estimators of the parameters are obtained and compared with the maximum likelihood estimators which are introduced by Freund. We know that the method of moments estimators coincide with the maximum likelihood estimators and Bayes estimators are more efficient than the maximum likelihood estimators in moderate samples. The asymptotic distributions of the maximum likelihood estimators and the estimator of mean time to system failure are obtained.

  • PDF

Development and Application of a Generation Method of Human Models for Ergonomic Product Design in Virtual Environment (가상환경상의 인간공학적 제품설계를 위한 인체모델군 생성기법 개발 및 적용)

  • Ryu, Tae-Beum;Jung, In-Jun;You, Hee-Cheon;Kim, Kwang-Jae
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.144-148
    • /
    • 2003
  • A group of digital human models with various sizes which properly represents a population under consideration is needed in the design process of an ergonomic product in virtual environment. The present study proposes a two-step method which produces a representative group of human models in terms of stature and weight. The proposed method first generates a designated number of pairs of stature and weight within an accommodation range from the bivariate normal distribution of stature and weight of the target population. Then, from each pair of stature and weight, the method determines the sizes of body segments by using 'hierarchical' regression models and corresponding prediction distributions of individual values. The suggested method was applied to the 1988 US Army anthropometric survey data and implemented to a web-based system which generates a representative group of human models for the following parameters: nationality, gender, accommodation percentage, and number of human models.

Hidden truncation circular normal distribution

  • Kim, Sung-Su;Sengupta, Ashis
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.797-805
    • /
    • 2012
  • Many circular distributions are known to be not only asymmetric but also bimodal. Hidden truncation method of generating asymmetric distribution is applied to a bivariate circular distribution to generate an asymmetric circular distribution. While many other existing asymmetric circular distributions can only model an asymmetric data, this new circular model has great flexibility in terms of asymmetry and bi-modality. Some properties of the new model, such as the trigonometric moment generating function, and asymptotic inference about the truncation parameter are presented. Simulation and real data examples are provided at the end to demonstrate the utility of the novel distribution.

Estimation of Freund Model for System Level Life Testing Using Component Life Data (체계수명시험에서 얻어진 부품의 수명자료를 이용한 Freund 모형의 추정)

  • 홍연웅
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Consider a life testing experiment in which multiple two-component shared parallel systems are put on test, and the test is terminated at a specified number of system failures. The bivariate data obtained from such a system-level life testing can be classified into three classes: 1) the case of failed two components with known failure times, 2) the case of censored two components, and 3) the case of one censored component and the other failed component of which the failure time might be known or unknown. Under this censoring scheme and the assumption of Freund's bivariate exponential life distribution, the maximum likelihood estimators are obtained. Results of comparative studies based on Monte Carlo simulation are presented.

  • PDF

Box-Cox Power Transformation Using R

  • Baek, Hoh Yoo
    • Journal of Integrative Natural Science
    • /
    • v.13 no.2
    • /
    • pp.76-82
    • /
    • 2020
  • If normality of an observed data is not a viable assumption, we can carry out normal-theory analyses by suitable transforming data. Power transformation by Box and Cox, one of the transformation methods, is derived the power which maximized the likelihood function. But it doesn't induces the closed form in mathematical analysis. In this paper, we compose some R the syntax of which is easier than other statistical packages for deriving the power with using numerical methods. Also, by using R, we show the transformed data approximately distributed the normal through Q-Q plot in univariate and bivariate cases with some examples. Finally, we present the value of a goodness-of-fit statistic(AD) and its p-value for normal distribution. In the similar procedure, this method can be extended to more than bivariate case.

A Bootstrap Test of Independence for an Absolutely Continuous Bivariate Exponential Model

  • Lee, In Suk;Kim, Dal Ho;Cho, Jang Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 1996
  • In this paper, we consider the problem of testing independence in the absolutely continuous bivariate exponential distribution of Block and Basu(1974). We construct a bootstrap procedure for testing zero and non-zero values of the parameter ${\lambda}_3$ which measures the degree of dependence and compare the power of the bootstrap test with likelihood ratio test(LRT) by Gupta et al.(1984) and the test based on maximum likelihood estimator(MLE) $\hat{{\lambda}}_3$ by Hanagal and Kale(1991) for small and moderate sample sizes.

  • PDF

Fisher Information and the Kullback-Leibler Distance in Concomitants of Generalized Order Statistics Under Iterated FGM family

  • Barakat, Haroon Mohammed;Husseiny, Islam Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.389-405
    • /
    • 2022
  • We study the Fisher Information (FI) of m-generalized order statistics (m-GOSs) and their concomitants about the shape-parameter vector of the Iterated Farlie-Gumbel-Morgenstern (IFGM) bivariate distribution. We carry out a computational study and show how the FI matrix (FIM) helps in finding information contained in singly or multiply censored bivariate samples from the IFGM. We also run numerical computations about the FIM for the sub-models of order statistics (OSs) and sequential order statistics (SOSs). We evaluate FI about the mean and the shape-parameter of exponential and power distributions, respectively. Finally, we investigate the Kullback-Leibler distance in concomitants of m-GOSs.

Bivariate Frequency Analysis of Rainfall using Copula Model (Copula 모형을 이용한 이변량 강우빈도해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.827-837
    • /
    • 2012
  • The estimation of the rainfall quantile is of great importance in designing hydrologic structures. Conventionally, the rainfall quantile is estimated by univariate frequency analysis with an appropriate probability distribution. There is a limitation in which duration of rainfall is restrictive. To overcome this limitation, bivariate frequency analysis by using 3 copula models is performed in this study. Annual maximum rainfall events in 5 stations are used for frequency analysis and rainfall depth and duration are used as random variables. Gumbel (GUM), generalized logistic (GLO) distributions are applied for rainfall depth and generalized extreme value (GEV), GUM, GLO distributions are applied for rainfall duration. Copula models used in this study are Frank, Joe, and Gumbel-Hougaard models. Maximum pseudo-likelihood estimation method is used to estimate the parameter of copula, and the method of probability weighted moments is used to estimate the parameters of marginal distributions. Rainfall quantile from this procedure is compared with various marginal distributions and copula models. As a result, in change of marginal distribution, distribution of duration does not significantly affect on rainfall quantile. There are slight differences depending on the distribution of rainfall depth. In the case which the marginal distribution of rainfall depth is GUM, there is more significantly increasing along the return period than GLO. Comparing with rainfall quantiles from each copula model, Joe and Gumbel-Hougaard models show similar trend while Frank model shows rapidly increasing trend with increment of return period.

A Study of Statistical Analysis of Rock Joint Directional Data (암반 절리 방향성 자료의 통계적 분석 기법에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • Rock joint orientation is one of important geometric attributes that have an influence on the stability of rock structures such as rock slopes and tunnels. Especially, statistical models of the geometric attributes of rock joints can provide a probabilistic approach of rock engineering problems. The result from probabilistic modeling relies on the choice of statistical model. Therefore, it is critical to define a representative statistical model for joint orientation data as well as joint size and intensity and build up a series of modeling procedure including analytical validation. In this paper, we have examined a theoretical methodology for the statistical estimate and hypothesis analysis based upon Fisher distribution and bivariate normal distribution. In addition, we have proposed the algorithms of random number generator which is applied to the simulation of rock joint networks and risk analysis.

New Family of the Exponential Distributions for Modeling Skewed Semicircular Data

  • Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.205-220
    • /
    • 2009
  • For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.