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Abstract

For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend
it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is
straightforward to generate samples from the l-axial exponential distribution. Asymptotic result reveals two
things. The first is that linear exponential distribution can be used to approximate the l-axial exponential
distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property
though it doesn’t have strict memoryless property. Some trigonometric moments are also derived in closed
forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests
and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit
test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial
exponential distributions.

Keywords: l-axial data, skewed angular data, projection, test, confidence interval.

1. Introduction

Many useful circular models may be generated from known probability distributions on the real line
or on the plane, by a variety of mechanisms. A few general methods include that (1) a wrapping
method by wrapping a linear distribution around the unit circle, (2) a method through characterizing
properties such as maximum entropy, etc., (3) an offset method and (4) a stereographic projection
method that identifies points on the real line with those on the circumference of the circle. Using
these methods, circular models are prevalent at most textbooks (Fisher, 1993; Jammalamadaka and
SenGupta, 2001; Mardia and Jupp, 2000).

However none of those methods and models concentrate on the semicircular or the axial data.
Sometimes angular data are given as modulo 7. Some examples are as follows: (1) the long axis
of particles in sediments or the optical axis of a crystal, rather than a direction, (2) orientations
of core samples, (3) a sea turtle example that a sea turtle emerges from the ocean in search of a
nesting site on dry land, etc. Therefore we do not need full circular model in these data. Guardiola
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{2004) and Jones {1968) noted this fact. Guardiola (2004) proposes a simple projection method to
obtain the semicircular normal distribution.

Furthermore most of current models are symmetric. Even recent models appearing at Jones and
Pewsey (2005), Pewsey et al. (2007) are symmetric. Pewsey {2002, 2004) considers testing problems
that the underlying distribution is reflectively symmet'riyc about an unknown central direction and
about a median axis, respectively. Recently some skewed circular models are developed using
a wrapping method by Pewsey (2000, 2006, 2008) and Jammalamadaka and Kozubowski (2003,
2004). As noted before none of these models concentrate on semicircular data either. In this sense,
we need to develop a model that can handle skewed semicircular data. The exponential distribution
which is analytically very simple plays a prominent role in physics. It holds for distances in time,
especially between the happening of rare events. As a model for life testing, it does serve as a first
approach. Reliability theory and reliability engineering also make extensive use of the exponential
distribution. Because of the memoryless property of this distribution, it is well-suited to model
the constant hazard rate portion of the bathtub curve used in reliability theory. Obviously the
exponential distribution is skewed to the right.

Hence we develop a new family of distributions based on the exponential distribution and the pro-
jection method. We project the exponential distribution over a quartér~circular segment to obtain
the 4-axial exponential(4AE) distribution. Extension to the l-axial exponential(LAE) distribution
is obtained from simple transformation of 4AE random variable. Some special cases are the semi-
circular exponential(SCE) distribution and the circular exponential(CE) distribution. Asymptotic
result reveals that linear exponential distribution can be used to approximate the LAE distribu-
tion. Furthermore we obtain the asymptotic memoryless property of the LAE distribution though
it doesn’t have strict memoryless property. We derive some trigonometric moments of the 4AE
distribution and the SCE distribution. As a result, we find that some of the trigonometric mo-
ments are the same as those of semicircular Laplace distribution(SCL) {Abn and Kim, 2008) by the
stochastic relationship between the SCL distribution and the 4AE distribution. We derive the max-
imum likelihood estimator of model parameters in three different situations. Furthermore statistical
tests and two-sided confidence intervals are also derived when a location parameter is known. The
Kolmogorov-Smirnov test is adopted for goodness of fit test of the [-axial exponential distribution.
Bivariate l-axial exponential distributions are derived using the bivariate exponential distribution
(Gumbel, 1960) and a bivariate transformation. Each marginal density from the bivariate LAE
distributions follows the LAE distribution. ‘

This article is organized as follows. Section 2 defines the 4AE distribution and extend it to the
LAE distribution. SCE and CE distributions are obtained as special cases of the LAE distributions.
We get the trigonometric moments of the 4AE distribution and the SCE distribution. We estimate
parameters of the LAE distribution by a maximum likelthood method in Section 3. Some hypothesis
tests and confidence intervals are also developed in the same section. A bivariate extension of two
kinds of the LAFE distributions is considered in Section 4. Conclusion is drawn in Section 5.

2. New Family of the Exponential Distributions
2.1. Definition

The exponential distribution occurs naturally when describing the lengths of the inter-arrival times
in a homogeneous Poisson process. In queuing theory, the service times of agents in a system are
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often modeled as exponentially distributed variables. In physics, if you observe a gas at a fixed
temperature and pressure in a uniform gravitational field, the heights of the various molecules also
follow an approximate exponential distribution.
Let X have an exponential distribution with a parameter o, i.e., the density of X is

1

—€
(22

5, x>0,0>0.
For brevity, we shall say that X follows exp(c). For a positive real number r, define the angle 6

by § = tan™' (x/r). Hence, z = rtan(f). Obviously, the probability density function(pdf) of 6 is
given by

__tan(9)

lsec2((9)exp( ), w:z, 0<o<Z. (2.1)
v @

r 2

This distribution can be used only for modeling any angular data having a range, 0 < 6 < n/2.
So it is desirable to extend it to a model which can handle any angular data having a range,
—7/2 < 6 < 7/2. This type of data is called axial or semicircular data. Furthermore we need to
extend the suggested model to the l-axial distribution, which is applicable to any arc of arbitrary
length say 27/l for | = 1,2,.... Occasionally, measurements result in any arc of arbitrary length,
say 27 /l, 1 = 1,2,..., so it is desirable to extend the derived distribution.

Let 8" =46/1, [ = 1,2,..., then the pdf of 6* is given by

_tan(l6"/4)
®

* 2
), 4,0:%,0<9 <—7r.

L 2 0%
@sec (16*/4) exp< ;i

We denote this distribution as l-axial exponential(LAE) distribution. Note that [ = 1 gives us the
circular exponential(CE) distribution, [ = 2 suggests the semicircular exponential(SCE) distribution
or the 2-axial exponential distribution(2AE) and [ = 4 is the derived distribution, (2.1), which we
call it as the 4-axial exponential(4AE) distribution. We will use the notation SCE instead of 2AE
for easy understanding.

More generally, we introduce the parameter u as the location parameter for the LAE distribution
and define it as LAE(u, ).

Definition 2.1.  The pdf of LAE(u, ) is defined as

L sec?(1(6" — 1) /4) exp (————tan(lw*_m/@) , =2 u<o< Moy —m<p<n (2.2)
4y %) r l

Geometrically r is the distance between the radius and the support of the exponential density. The
closer the support is to the radius, the larger ¢. Hence it is not a parameter. So without loss of
generality we can assume that r = 1. For the following three figures of the circular plots we use
the same values of ¢ (= 1,1/2,1/5) with g = 0 for comparison purpose. Figure 5.1, 5.2 and 5.3
show the shapes of the pdfs of the 4AE distributions, the SCE distribution and the CE distribution,
respectively. All pdfs are skewed to the right. The degree of skewness increases as ¢ gets smaller.
Hence we can handle skewed angular data.

2.2. Some basic properties

We begin with a Lemma (Gradshteyn and Ryzhik, 2007) which will be used continuously.
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Lemma 2.1.
00 o2k o2k ) 2
tan(z) = %ﬂl&klwm‘l, z? < %,
k=1 :
s E2k 71'2
sec(z) = Z |(2k)lx2’“, z? < T

k=0

where the number B,,, representing the coefficients of " /n! in the expansion of the function

o tn
=Y B.—, O<l[t|<2n
ni

n=0

t
et —1

are called Bernoulli numbers. And the numbers E,, representing the coefficients of t*/n! in the
expansion of the function

L _y el <l
cosht_ﬂzo Rk 2

are known as the Euler numbers.

We consider the properties of the LAE distribution. If a location parameter p is known, then it is
obvious that the LAE distribution is a member of one parameter exponential family. However it
is not a member of two parameter exponential family when both parameters are unknown. It is
straightforward to genefate samples from the LAE distribution from the following property.

Property 1. First, generate samples from exp(c), and then use the inverse transformation, 6% =
p+4/ltan™ (z/r), ¥ = o /p. v

Similarly, the cumulative distribution function(cdf) of the LAE distribution is F(6”; i, ¢) = Fx(rtan
(1{6* ~ p)/4)), where the function Fx(-) is the cdf of the exponential distribution, exp{o).

Property 2. The cdf of LAE(u, ¢} is

F0 5u,¢)=1—exp (-M) )

¥
By inverting the cdf of the LAE distribﬁtion, we get the following quantile function.

Property 3. The quantile function for LAE(yu, ) is
_ 4
F7 (pip¢) = p+ 5 tan”" (plog(1—p)) .

Let Xi,..., X, be independent, exponentially distributed random variables with a parameter o.
Then min{X1,..., X»} is also exponentially distributed, with a parameter ¢ /n. Similar relationship
also occurs at the LAE distribution.

Property 4. Let 6; ~ LAE(0,¢),¢ = 1,2,...,n, independently, then min{6i,...,0,} follows
LAE(0, p/n).

However max{X1,...,Xx} and max{67,...,0;} are not exponentially and l-axial exponentially
distributed, respectively. Suppose that 6x ~ SCL(0, ) and 8y ~ 4AE(0, ), then there is an
important stochastic relationship between the SCL distribution and the 4AE distribution.
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Property 5. 8y = tan™" | tan(0x)|.
Since in ‘linear’ statistics, ¥ = | X| ~ exp(c), where X ~ Laplace(0, o). We consider the asymptotic
behavior of an LAE(u, ¢) when ¢ goes to 0.
Property 6. Let Y = 1(8* — u)/(4¢p), then Y ~ exp(1) asymptotically for sufficiently small .
For the density (2.2), suppose that Y = [(6* — u)/(4¢p), then the pdf of Y is given by
tan(w)) .
14
By Lemma 2.1, if we use only up to the first order terms, then the density of Y is approximately

exp(1). Hence the LAE distribution can be approximated by ‘linear’ exponential distribution for
sufficiently small .

sec” (yip) exp <—

One more useful property of the LAE distribution is the asymptotic memoryless property. The LAE
distribution doesn’t have memoryless property strictly, but it has the property asymptotically.

Property 7. If 8" ~ LAE(0, ), then for sufficiently small 85 and 07 such that 0 < 65 < 07 < 27/l,
P(O* > 07160" > 65) = P(8" > 07 —6)).

Since P(6" > 67(0" > 65) = P(8* > 67)/P(0" > 65) = exp [~ {tan(l67/4) — tan(l6;/4)}/¢| and the
last equation becomes exp{—I(67 — 65)/(4¢)} =~ P(6* > 67 — ;) asymptotically by Lemma 2.1 if
we use only up to the first order terms.

2.3. Trigonometric moments

In this section, we first concentrate on the 4AE distribution, and then move to the SCE distribution
because of simple explanation. Similar to those of any circular density, trigonometric moments of
the LAE distribution are defined as follows: ¢, = Ee"*®" = a,+i8, = E cos(pf*) +iE sin(pd*), p =
0,%+1,+2,.... For the explanation purpose, we use the notations 6 for the 4AE distribution and #*
for the LAE distribution if nothing is commented even though the 4AE distribution is a special case
of the LAE distribution. We assumed that the location parameter u = 0 without loss of generality.
To get the sine moments and the cosine moments, we need to change cos(pd*) and sin(pf™) to the
functions of x using the given transformation x = tan(#*). It can be done by the multiple-angle
formulas, that is,

cos(pf™) i < ) cos®(6%) sin? ¥ (%) cos {(p — k)g},
sin(pd*) = 2”: ( > cos” ) sin® k(ﬂ*)sin{(p— k)g},
k=0

when p is a positive integer. This multiple-angle formulas established only using the Euler formula
and binomial theorem.

Lemma 2.2. Using = tan(8), above multiple-angle formulas are given in terms of x by

p
cos(p*) = Z (Z) ek TF(1 +x2)A%,

k=0

P
sin(pd*) = Z (i) co_pz? R 42772,

k=0

[N
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where sin(8*) = z/v1 + 22, cos(6”) = 1/v/1 + z2,
1, if p—k=4m,
COS{(p—k)g}=c}J_k= 0, ifp—k=2m+1,
-1, fp—k=4m+2

and
1, ifp—k=4m+1,
sin{(p k)i} x=4{ 0, if p—k=2m,
-1, if p—k=4m+3,

where m =0,1,2,....
2.3.1. Trigonometric moments of the 4AE distribution

Theorem 2.1.  The first four a, = E cos(pf), p = 1,2,3,4 for 4AE(0, p) are given as follows:

e 3 {n()-(2)}

e i () ()
o= (3) - () 2o ()

4 af 1] -1/2
1- —G3 [ —
o Jrg 13 <4¢2 1/2,0,1/2 )’
where H,(z) is the Struve function, Y, (z) is the Bessel function of the second kind (Abramowitz and

Aiy...yQp

b b is called as Meijer’s G-function (Gradshteyn and Ryzhik,
1,---5,0q

Stegun, 1972) and Gpg* (x

2007).

Proof. These moments are exactly the same as those of SCL(0, ¢) (Ahn and Kim, 2008). Because
of Property 5, the result follows immediately by this stochastic relationship between the 4AE
distribution and the SCL distribution. O

Since the 4AE distribution is not symmetric, we need to derive the sine moments, 8, = E'sin(p8).

Theorem 2.2.  The first four fp, p = 1,2,3,4 for 4AE(0, p) are given as follows:

s G (-]

2o m(2) (2 (D)

33:7%{ (% 1/201/2>_G?;’<$ —1/2—,(1),1/2)}’

b= { (ﬁ 1,0, 1/2) Gl <4; 0, Ji/z)} (23)

B

i
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where ci(x) is the cosine integral and si(x) is the sine integral defined as follows:

ci(z) = — /x <05t 4t = ¢ + log(x) + /T %dt,

C' is the Euler constant and Si(z) = [ sin(t)/tdt.

Proof. The proof is the process of using some transformations. For all sine moments, we first use
the transformation, * = tan(f), so we skip this part for the following proof. For the first sine
moment, after the transformation,

>* _1
G = l/ T (1 +ac2) 2 exp <~£> dz.
0 14

@

Result follows by the integral formula 3.366.3 (Gradshteyn and Ryzhik, 2007). To obtain fa, after
the transformation,

B2 = g/Oooa:(l +x2)f1exp <*%> dx.

We use the integral formula 3.354.2 (Gradshteyn and Ryzhik, 2007) to get the result. The third
sine moment is as follows after the transformation and simple algebra:

Bz = % {3 /()Oox(1+a:2)_%exp <*%> dac—/oooﬂc3 (1 +$2)A%exp (—%) d:r}.

For two integrals of right hand side, we use the integral formula 3.389.2 (Gradshteyn and Ryzhik,
2007). The fourth sine moment B;, after the transformation and simple algebra:

4 i _ e _
64:—{/ z(1+ %) %exp <~£) dm—/ 2} (1+2%) Zexp (—£> dz}.
¢ LJo ® 0 @
We use the same integral formula of 33, the integral formula 3.389.2 to get the result. a

2.3.2. Trigonometric moments of the SCE distribution

Theorem 2.3.  The first two a, = E cos(p*), p = 1,2 for SCE(0, @) are given as follows:
U () (5)
¥ 14

V29t
4 o f 1] -12
1= = .
a2 N 13<4<p2 1/2,0,1/2

Proof. The first cosine moment, a1, is the same as a2 of the SCL distribution and the second
cosine moment is the same as a4 of the SCL distribution (Ahn and Kim, 2008) by Property 5 and
the property of an even function. a

aq

[N
[N

In general we find that the k™" cosine moment, ay = E cos(k8*), of the SCE distribution is the same
as the 2k'" cosine moment, agp = E cos(2k0™), of the SCL distribution by Property 5. We also
need to calculate the sine moments, 8, = E sin(p8*), since the SCE distribution is not symmetric.
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Theorem 2.4, The first two sine moments of SCE(0, p) are gwen by

()= (3) = ()= (G}
B =—=<-ci{—=tlcos{—])—si{—)sin|—=]}r,
v P P P @
2 31 1 0 31 1 -1
& NP {G“” (Zcfo? 1,0,1/2) — G (&Tp? 0,0,1/2)}'

Proof. Note that the first sine moment of the SCE distribution is the same as 32 given at (2.3)
of the 4AE distribution. And the second sine moment of the SCE distribution is the same as 84
given at (2.3) of the 4AE distribution since we are using the transformation, §* = 46/1,1=1,2,..,
mentioned in Section 2.1. O

il

Note that, in general, the k" sine moment, o, = Esin(k@*), of the SCE distribution is the same
as the 2k** sine moment, az, = F sin(2k0), of the 4AE distribution because of the transformation,
6" =460/1,1=1,2,....

3. Statistical Inference
The log-likelihood for a random sample of size n, 8* = (61,...,0;,), from LAE(p, ¢) is given by

> tan(i(0; - )/4)

Hnas0) = ntog (1) + 3 logfoec®1(67 — )/} - BENCEY
i=1

We consider the maximum likelihood estimators of ¢ and g in three different situations. First we
consider the case of u known and  unknown.

3.1. Assuming g known and ¢ unknown

We first derive the maximum likelihood estimator of ¢ when 6* ~ LAE(y, @), where p is known.
And then discuss how to do hypotheses tests and how to develop confidence intervals.

Theorem 3.1, Let 8* ~ LAE(u,v), where pi is known, then the mazimum likelihood estimator of ¢
can be drawn in closed form as follows:

> tan(U(6; — p)/4)

~ i=1
- ) 3.2
@ - (3.2)

Proof. The first derivative of (3.1) is given by

3" tan(i(0; ~ w)/4)
A p;07) _ _n =

dg @ ¢*
Set it to 0, the result follows. The second derivative with respect to ¢ after plugging ¢ instead of
¢ is negative. Furthermore (3.1) is —co at the boundaries of . So (3.2} is a global maximum and
hence it is the maximum likelihood estimator of ¢. )
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Theorem 3.2. Let 0" ~ LAE(p, @), where u is known, then the mle of @ given at (3.2) is UMVUE
of ¢ too.

Proof. By the Factorization theorem, Y1, tan(l(6] — p)/4) is a sufficient statistic for . This
family of distribution assuming g known is a member of one parameter exponential family so it
is complete. Hence Y7  tan(l(8; — p)/4) is a complete sufficient statistic for ¢. Expectation of
this complete sufficient statistic becomes ny after transforming z; = tan(l(8; — p)/4), i =1,.

and by simple algebra. Hence the maximum likelihood estimator of ¢ is also UMVUE(Umformly

Minimum Variance Unbiased Estimator) by the Rao-Blackwell-Lehmann-Scheffé theorem (Lehmann
and Casella, 1998). O

Theorem 3.3. Let 6" ~ LAE(u, ), where yu is known, then the exact distribution of the mle of ¢
given at (3.2) follows 1/nT(n, ).

Proof. Let X; = tan({(6; — 1t)/4), then the distribution of X; follows exp{y) independently. So the
exact distribution of the mle of ¢ is 1/nI'(n, ¢) by the property of gamma distribution. |

We can find that mle converges in probability and converges almost surely as following:
Theorem 3.4. Let 0 ~ LAE(u, p), where p is known, then the mle satisfies

lim P(|<,5—<p|26):0andP<lim !¢A<p|26):0.

n—0oc

Proof. Let X; = tan({(6; — p)/4), then the mle of ¢ is the sample mean of X;. Hence, by the weak
(strong) law of large numbers, the result follows immediately since Var tan{1(8] — u)/4) = ¢* < .
O

Furthermore we derive an asymptotic distribution of the mle of ¢.

Theorem 3.5. Let 6" ~ LAE(u, ), where p is known, then the asymptotic distribution of the mle
of v given at (3.2) is given by

V(g — ) 5 N (0,67,

Proof. Let X; = tan({(6; — p)/4), then the mle of  is the sample mean of X;. Hence, by the
central limit theorem(CLT), the result follows immediately since Vartan(I(; — p)/4) = ¢* < co.
a

We can do hypotheses test based on the exact distribution. The test statistic based on the exact
distribution is now

2ng0
o

TSy =

The distribution of the test statistic is x*(2n) under Ho : ¢ = o by the property of gamma
distribution. So we reject Hy if TSy > Xgm/z or TSy < Xgm_a/, Under Hy : ¢ > o, we reject
Hy if TSy < Xgn,l,a. Similarly we reject Hp : ¢ < o if TSy > x%n’a. Since, under the given two
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one-sided Hy’s, the test statistic’s distribution is x?(2n). Exact (1 — a)100% two-sided confidence
interval for ¢ is given by
2no 2ng
Xgn,% ’ Xgm—%

Similarly we can do hypotheses test based on an approximate distribution. The test statistic based
on an approximate distribution is now

@ — o
T wo/vn’
Since the distribution of the test statistic is the standard normal distribution under Hp : ¢ = oo,
we reject Ho if |[T'So| > zas2. Under Hp : ¢ > o, we reject Hy if TSy < —zo. Similarly we
reject Hy : ¢ < o if TSo > zo. Since, under the given two Hp’s, the test statistic’s distribution
is the standard normal distribution for the one-sided tests. Approximate (1 — @)100% two-sided
confidence interval for ¢ is given by

Pz

Nl

£

vn'

since ¢ is a consistent estimator of ¢ by Theorem 3.4 and by the following Slutsky’s Theorem
(Lehmann and Casella, 1998).

Lemma 3.1. (Slutsky’s Theorem) If Y, £ Y, and A, and B, tend in probability to a and b,
respectively, then An + BnYn Latby.

To validate all these theoretical results, an ad hoc approach is that first get a good estimate of a
location parameter p. Then the data is now free of location so all above theoretical results can be
applied which is fruitful. For example, circular mean (Jammalamadaka and SenGupta, 2001) is a
good candidate for removing location effect which is defined by

tan™! (§>, ifC>0,8>0,
C

z ifC=0, §>0,

2

o = § tan~! (ﬁ) + if C <0,
C
—1 S .
tan o + 2, ifC >0, §<0,
undefined, ifC=0 =0,

where (C,S) = (37, cos(6}), S0, sin(6])).

3.2. Assuming 1 unknown, ¢ known or both i and ¢ unknown

In these two situations it is impossible to get the maximum likelihood estimators in closed forms.
So we first calculate the minus log-likelihood for a random sample of size n, §* = (0%,...,6}),
from the LAE distribution and then, for the following example, the corresponding estimates have
been computed by direct minimization (Byrd et al., 1995) of the minus log-likelihood itself. Byrd’s
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method allows box constraints, that is, each variable can be given a lower and/or an upper bound.
For our example, to improve estimation process we can use ranges of 1 and ¢ of the likelihood as
box constraints which satisfy (07,,) —2m/l < < 6f})) and ¢ > 0, where 07, is the minimum sample
and 67, is the maximum sample.

EXAMPLE 3.1. We simulated a data set of size 100 from SCE (i = 0, = 1) using the stochastic
relationship, 6" = p+4/ltan™ ' (x/r), r = 0/¢ by Property 1. By direct minimization of the minus
log-likelihood, we get estimates /i = 0.001 and ¢ = 1.002. Circular data plot with pdfs and Healy’s
plot (Healy, 1968) are shown in Figure 5.4. We can visually note that a satisfactory fit of the density
to the data by Figure 5.4. Two pdfs(the solid line corresponds the original pdf and the dashed line
represents to the fitted line) are almost the same. Healy’s plot is based on

di =rtan(l(6; —p)/4), (i=1,...,n). (3.3)

And d; is sampled from the exponential distribution with a parameter o if the fitted model is
appropriate. Practically the exact parameter values in Equation (3.3) need to be replaced by
estimates. Above d; then sorted and plotted against the exp(o) percentage points. Similarly, the
cumulative exp(c) probabilities can be plotted against their nominal values 1/n,2/n,...,1; the
points should lie on the bisection line of the quadrant.

Above approach is a graphical method, whereas the following one is a theoretical one. Suppose
0" ~ LAE(p, ¢) and we wish to test the hypothesis,

Ho: Fo«(0") = Fo(0") V2 ws. Hy:3 z such that Fp«(0") # Fo(67),

where Fy(6*) is given by Property 2. Then the Kolmogorov-Smirnov test (Lehmann and Romano,
2005) can be adopted. Given a random sample of size n, % = (6%, ...,6%), from the LAE distribu-

tion, we first arrange those in increasing order of magnitude. The empirical distribution function
is defined by

0, if 8% < 6<*1>,
Fa(67) = % i 07 <0 <y,
1, if 67, < 6"

The value of Kolmogorov-Smirnov statistic is defined by
Dy = supv/n |F.(07) — Fo(67)].
P

The Kolmogorov-Smirnov test rejects the null hypothesis if Dy, > $n,1-q, where s, 1« is the 1 — «
quantile of the null distribution of D,, when Fy is the uniform U(0, 1) distribution (Smirnov, 1948).
The finite sampling distribution of D, under Fjy is the same for all continuous Fy, but its exact
form is difficult to express. By the duality of tests and confidence regions, the Kolmogorov-Smirnov
test can be inverted to yield uniform confidence bands for F, given by

< 5n,1~a} .

By construction, Pr{F € Rn1-o} =1 — a if F is continuous. So the confidence band is then

Rnji—o = {F ssup v/ |Fn(8%) — F(67)
pr.

max{0, F,(07) — sn1-a} < F(0") < min{l, Fn(8") + sni-a}.
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4. Bivariate Extension

There have been several versions of the bivariate exponential distributions (Johnson and Kotz,
1972). Among them, we use Gumbel’s bivariate exponential distribution {(Gumbel, 1960) because
of the simple nature of the density function. Similar approach can be applied to the different
versions of the bivariate exponential distributions, for example, Freund (1961). Gumbel (1960)
presents two types of bivariate exponential density. The first type pdf is given as follows:

flar,@2) = e7 ™17 OFOT0R20(1 4 52 ) (1 4 622) — 6}, 2 >0,i=1,2 0<6<1.
The second type pdf is the following:
flxr,z2) =™ 72 {1+ a(2e™™ —1)(2e™™* - 1)}, z:>0,i=12 —-1<a<l. (41)

The marginal density function is the exponential function at both types, i.e. X; ~ exp(1), i = 1,2.

We can construct a bivariate LAE distribution in a manner similar to the construction of (univariate)
LAE distribution. We shall use the same transformation applied in a bivariate. context, i.e., z; =
rtan(6;), ¢ = 1,2 and then use §; = 46;/l,i = 1,2 and | = 1,2,.... After simple algebra, the
density function of the first type bivariate LAE distribution is defined as following.

Definition 4.1. The first type bivariate LAE pdf is defined as

2.2 2 * * * *
ll—g {:l_‘[sec2 (lil )}exp [—rtan (lil> — {1 + értan (%)}rtan (l—%-)] X
i=1

2 *
[H{l—kértan(%)}—&}, 0<or <2 i=1)2, 1=1,2,..., and 0< 6 < 1. (4.2)

{

i=1

Applying the same approach to the second type pdf, (4.1), we get the second type bivariate LAE
density as following.

Definition 4.2. The second type bivariate LAE pdf is given by

5 e () oS (35 o oo o ()]

i=1 =1

x 2w
0<€,»<T7r,z=1,2,l=1,2,...,and—lgagl. (4.3)

Similar to (univariate) LAE distribution, we may also introduce the location parameters, p;,i = 1,2
to the above two pdfs, (4.2) and (4.3). So the densities with the location parameters can be obtained
plugging in 8} — p;,¢ = 1,2 instead of 8,7 = 1,2 at the above two density functions. Note that
l = 2 gives the bivariate version of SCE distribution and ! = 1 suggests bivariate version of CE
distribution.

Note that each marginal density of 87, ¢ = 1, 2 from the above two pdfs follows LAE(0, ), ¢ = 1/r,
after integrating out the other angular random variable,

_tan(16; /4)

Lsecz(lef/zl)exp( ), <p=1,0<€f<2—7randz'=1,2.
4¢ 72 T

l
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Figure 5.1. Circular plot of the pdfs of 4AE(0, ¢)

Figure 5.2. Circular plot of the pdfs of SCE(0, ¢)

5. Conclusion

We derived the 4AE distribution from the exponential distribution via the projection of an expo-
nential distribution over a quarter-circular segment. Then we extended it to the LAE distribution
using the transformation, 8* = 46/1, | = 1,2,.. ., for modeling any arc of arbitrary length say 27/l
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Figure 5.3. Circular plot of the pdfs of CE(0, )
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Figure 5.4. Circular data plot with pdfs (the solid line represents the original pdf and the dashed line corresponds to the fitted
pdf) and Healy's plot

for I = 1,2,.... Occasionally, measurements result in any arc of arbitrary length. Derived new
family of the distributions can be used to model skewed angular data. Asymptotic results reveal
that linear exponential distribution can be used to approximate the LAE distribution and the LAE
distribution has the approximate memoryless property though it doesn’t have strict memoryless
property as the exponential distribution.

Trigonometric moments are derived for the 4AE distribution and the SCE distribution. We find
that, by the stochastic relationship between the SCL distribution and the 4AE distribution, some
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cosine moments of the SCL distribution and the SCE distribution are the same. Furthermore, by
a simple transformation, some sine moments of the 4AE distribution and the SCE distribution
are the same. When a location parameter is known, we derive mle of ¢ in closed form. Based
on exact and asymptotic distributions of ¢, we suggest hypotheses tests and confidence intervals.
To find estimates of the LAE distribution when both parameters are unknown, we use the direct
minimization of minus log likelihood which result in maximum likelihood estimates. To check
validity of estimation process, we simulated a data set from the SCE distribution. By the density
plots and the Healy’s plot, the result is satisfactory. The Kolmogorov-Smirnov test is adopted for
goodness of fit test of the [-axial exponential distribution. Finally a bivariate version of two kinds
of the LAE distributions is obtained using the bivariate exponential distributions. Each marginal
density of 87,7 = 1,2 from two types of a bivariate LAE distribution follows LAE(0, ¢), ¢ = 1/r.
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