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Abstract

Many circular distributions are known to be not only asymmetric but also bimodal.
Hidden truncation method of generating asymmetric distribution is applied to a bivari-
ate circular distribution to generate an asymmetric circular distribution. While many
other existing asymmetric circular distributions can only model an asymmetric data,
this new circular model has great flexibility in terms of asymmetry and bi-modality.
Some properties of the new model, such as the trigonometric moment generating func-
tion, and asymptotic inference about the truncation parameter are presented. Simula-
tion and real data examples are provided at the end to demonstrate the utility of the
novel distribution.

Keywords: Asymmetric distribution, circular distribution, circular statistics, conditional
distribution, hidden truncation, trigonometric moments and von Mises distribution.

1. Introduction

Circular random variables are found in various areas of research such as biology, medicine,
just to name a few. Because of the periodic nature of a circular variable, it is necessary
to use a circular distribution to model a circular variable. For various types of circular
distribution, including von Mises (VM) or circular normal distribution, the readers can re-
fer to Jammalamadaka and SenGupta (2001). The circular normal distribution, which is
symmetric, has been mainly used to model a circular random variable. However, circular
distributions are rarely symmetric, i.e. they are usually asymmetric and even multi-modal
(Kim, 2011). Therefore, the VM distribution is not suitable to model such a data set. In fact,
this is also the case in linear statistical analysis (Arnold and Beaver, 2000; Azzalini, 1986)
that the normal distribution is often not suitable. One way to model an asymmetric and
multimodal distribution is using a mixture of von Mises distributions (Batschelet, 1981).
Another model suitable for an aymmetric and/or multimodal circular distribution is based
on nonnegative trigonometric sums (Fernandez-Duran, 2004). Other existing asymmetric
and/or bimodal circular distributions are appeared in Jammadamalaka and Kozubowski
(2004), Gatto and Jammalamadaka (2007), Umbach and Jammalamadaka (2009) and Kim
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(2011). Jammadamalaka and Kozubowski (2004) propose a model that is the result of wrap-
ping the exponential and Laplace distributions. Gatto and Jammalamadaka (2007) propose
a generalization of the von Mises distribution, which is an extension of the von Mises dis-
tribution. In Umbach and Jammalamadaka (2009), a method of building asymmetry into
circular distributions is discussed. Kim (2011) proposes an exponential family of distribu-
tions as a new family of circular distributions, which is absolutely suitable to model any
shape of circular distributions. In this paper, a new asymmetric and/or bimodal distribu-
tion is proposed using the hidden truncation method, which is illustrated in the following.
For other researches on circular variables, such as regression methods, our readers can refer
to Kim (2011) and SenGupta and Ugwuowo (2006).

Asymmetric distributions can occur in situations when the observed variables represent
a sample that has been truncated with respect to some hidden (or available) covariable
(Arnold and Beaver, 2000). Therefore, one can generate an asymmetric density, by beginning
with a bivariate density, then obtaining the conditional density given that the covariable is
truncated at some point. This method is called the hidden truncation method, and it is
well known that the method generates an asymmetric distribution when applied to linear
bivariate distributions. In this paper, it is one of our primary interest to show that the
hidden truncation method also works for a circular bivariate distribution in generating an
asymmetric circular distribution. It is shown that the new circular distribution allows for
great flexibility in terms of asymmetry and bimodality.

We apply the hidden truncation method to the circular normal conditionals (CNC) den-
sity, and show that the resulting distribution, called the hidden truncation circular normal
(HTCN) distribution, is asymmetric. Simulation results have shown that the HTCN dis-
tribution can also model a circular distribution that has two modes. After applying the
method to several other bivariate circular distributions, such as wrapped bivariate normal
distribution, wrapped bivariate cauchy distribution and bivariate cauchy distribution, it is
conjectured that the hidden truncation method applied to other bivariate circular distribu-
tions produces asymmetric distributions. Trigonometric moment generating function of the
new model and asymptotic confidence interval and hypothesis testing for the truncation pa-
rameter are presented. Then, the likelihood ratio test is applied to Fisher’s bird’s nest data
(Fisher, 1993) to assess the goodness of fit of the novel distribution. However, in order to
invoke the standard asymptotic distribution theory, certain regularity conditions have to be
met. Since the null value is a boundary point of the feasible region, we have used a mixture
of chi-squared distributions as the asymptotic distribution of test statistics as discussed in
Self and Liang (1987). All the numerical computations in this paper are performed using
‘optim’ function routine R.

Throughout this paper all circular random variables are assumed to take on values in
the interval (−π, π], and as the consequence, the corresponding densities are positive in this
interval and zero elsewhere. Density functions in this paper will not include explicit reference
to the support of the corresponding densities.

1.1. Hidden Truncation Circular Normal Model

In this section, it is shown how the hidden truncation method is applied to a bivariate
circular distribution to produce an asymmetric circular distribution. The circular normal
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conditionals (CNC) density is given by

f(θ, φ) = C · exp{a1 cos θ + a2 sin θ + a3 cosφ+ a4 sinφ+

a5 cos θ cosφ+ a6 cos θ sinφ+ a7 sin θ cosφ+ a8 sin θ sinφ}, (1.1)

where C is the normalizing constant, and ai ∈ R for i=1,.., 8. Its conditional distributions
are given as circular normal distributions, from which the name came. The marginal density
of Φ, after integrating out (1.1) with respect to Θ, is given by

f(φ) ∝ 2πI0[h(φ)] exp{a3 cosφ+ a4 sinφ}, (1.2)

where I0(h(φ)), the modified Bessel function of the first kind of order 0, is given by

2πI0(h(φ)) =

∫ π

−π
exp[h(φ) cos(θ − g(φ))]dθ =∫ π

−π
exp[(a1 + a5 cosφ+ a6 sinφ) cos θ + (a2 + a7 cosφ+ a8 sinφ) sin θ]dθ,

and h(φ) and g(φ) are given by

h(φ) =
√

[a1 + a5 cosφ+ a6 sinφ]2 + [a2 + a7 cosφ+ a8 sinφ]2

g(φ) = arctan

{
[a2 + a7 cosφ+ a8 sinφ]

[a1 + a5 cosφ+ a6 sinφ]

}
.

Next, f(θ, φ > b) and P (Φ > b) for some b ∈ (−π, π) are respectively obtained by integrating
(1.1) and (1.2) from b to π. Then, the conditional density of Θ given that the distribution
of Φ is left-truncated at b is given by

f(θ|φ > b) =
f(θ, φ > b)

P (Φ > b)
=

exp[a1 cos θ + a2 sin θ]
∫
b

exp [h1(θ) cos(φ− h2(θ))] dφ∫
b

∫
exp [a1 cos θ + a2 sin θ + h1(θ) cos(φ− h2(θ))] dθdφ

, (1.3)

where

[h1(θ)]2 = (a3 + a5 cos θ + a7 sin θ)2 + (a4 + a6 cos θ + a8 sin θ)2,

h2(θ) = arctan

{
a4 + a6 cos θ + a8 sin θ

a3 + a5 cos θ + a7 sin θ

}
.

The density in (1.3) is called the HTCN distribution, analogous to the hidden truncation
normal density that is obtained by applying the method to the bivariate normal distribution
(Arnold and Beaver, 2006). Simulation results show that the HTCN distribution is suitable
to model an asymmetric circular data, and even a bimodal circular data in some situations.
Various shapes of the HTCN density with {a1, a2, a3, a4, a5, a6, a7, a8} ={1,1,0,0,-1,-1,1,-1}
and b = {−π,−π3 ,

π
8 ,

π
4 }, are shown in Figure 1.1. An extensive sampling of different param-

eter values has failed to turn up any distribution with more than 2 modes. It is conjectured
that only unimodal and bimodal forms of the densities exist. Some of the properties of the
HTCN density are as shown below.
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Figure 1.1 Density plots of the hidden truncation circular normal (HTCN) densities with
b = −π,−π
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beginning from the top left and in the clockwise direction

Proposition 1.1 The trigonometric moment generating function is given by

E(exp(ipθ)) ∝
∫
b

exp(iph2(φ))
I1(h1(φ))

I0(h1(φ))
dφ, p = ±1, . . . .

Proof : Trigonometric moment generating function for the HTCN distribution is derived as
below.

E(exp(ipθ)) ∝
∫
b

∫
[cos pθ + ip sin θ] exp[a3 cos θ + a4 sin θ + a5 cosφ cos θ]

× exp[a6 cosφ sin θ + a7 sinφ cos θ + a8 sinφ sin θ]dθdφ

∝
∫
b

∫
[cos pθ + ip sin θ] exp[(a3 + a5 cosφ+ a7 sinφ) cos θ]

× exp[(a4 + a6 cosφ+ a8 sinφ) sin θ]dθdφ

∝
∫
b

∫
[cos pθ + ip sin θ] exp[h1(φ) cos(θ − h2(φ))]dθdφ

∝
∫
b

exp[iph2(φ)]
I1(h1(φ))

I0(h1(φ))
dφ.

�

Corollary 1.1 The mean direction of HTCN variable is given by

µ = arctan


∫
b

sinh2(φ) I1(h1(φ))
I0(h1(φ))

dφ∫
b

cosh2(φ) I1(h1(φ))
I0(h1(φ))

dφ

 .
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The circular variance of the HTCN distribution is given by

E(1− cos(θ − µ)) = 1−
∫
b

cos(µ− h2(φ))
I1(h1(φ))

I0(h1(φ))
dφ.

Proof : From the trigonometric moment generating function for the HTCN, we get the first
sine and cosine moments as shown below.

E(exp(iθ)) ∝
∫
b

exp[ih2(φ)]
I1(h1(φ))

I0(h1(φ))
dφ ∝

∫
b

(cosh2(φ) + i sinh2(φ))
I1(h1(φ))

I0(h1(φ))
dφ

=

∫
b

sinh2(φ)
I1(h1(φ))

I0(h1(φ))
dφ+

∫
b

cosh2(φ)
I1(h1(φ))

I0(h1(φ))
dφ ∝ E(cos θ) + iE(sin θ).

Then, we get the mean direction of Φ as follows.

µ = arctan

{
E(sin θ)

E(cos θ)

}
= arctan


∫
b

sinh2(φ) I1(κ(φ))
I0(κ(φ))

dφ∫
b

cosh2(φ) I1(κ(φ))
I0(κ(φ))

dφ

 .

Next, the circular variance is derived as follows.

E(cos(θ − µ)) ∝
∫
b

∫
cos(θ − µ) exp[a3 cos θ + a4 sin θ + a5 cosφ cos θ]

× exp[a6 cosφ sin θ] + a7 sinφ cos θ + a8 sinφ sin θ]dθdφ

=

∫
b

∫
cos(θ − µ) exp[(a3 + a5 cosφ7 sinφ) cos θ]

× exp[(a4 + a6 cosφ+ a8 sinφ) sin θ]dθdφ

=

∫
b

∫
cos(θ − µ) exp[h1(φ) cos(θ − h2(φ))]dθdφ

∝
∫
b

cos(µ− h2(φ))
I1(h1(φ))

I0(h1(φ))
dφ.

�

Suppose we observe n circular data points θ1, . . . , θn. The log likelihood of the HTCN
distribution is given by

logL[a, b] = −n logC(a, b)

+a1

n∑
1

cos θi + a2

n∑
1

sin θi +

n∑
1

log

{∫
b

exp [h1(θi) cos(φ− h2(θi))] dφ

}
, (1.4)

where a = (a1, a2, a5, a6, a7, a8)′ and C(a, b) is the denominator in (1.3). The first order
equations are obtained by using the Leibnitz’s rule of differentiation of integrals (Casella
and Berger, 2001) and the bounded convergence theorem (Royden, 1988). The MLEs are the
solutions of the first order equations, and they can be solved numerically. The information
matrix, I(a, b), is the inverse of negative of the Hessian matrix of (1.4). For example, its



802 Sungsu Kim · Ashis SenGupta

third diagonal element is given by the inverse of

I[3, 3] = −E
{
∂2 logL(a, b)

∂a3∂a3

}
= − ∂

∂a3

{
n

C(a, b)

∂C(a, b)

∂a3

}
+

n∑
1

∂

∂a3

{
1∫

b
exp [h1(b) cos(φ− h2(b))] dφ

}
×
{∫ π

b

exp [h1(θi) cos(φ− h2(θi))]
∂h1(θi) cos(φ− h2(θi))

∂a3
dφ

}
.

The regularity conditions for the asymptotic normality of the estimated parameters are met
for the likelihood function in (1.4) since the density is an analytic function of a (bounded)

circular variable. The asymptotic variance covariance matrix of (â, b̂)′ is given by I(a, b)−1.
So, asymptotically, we have

√
n((â, b̂)′ − (a, b)′) ∼ N(0, I(a, b)−1). (1.5)

1.2. Asymptotic inference about the truncation parameter

While the skewness of the hidden truncation normal density is determined by the truncated
value only, it is determined not only by the truncated value, but also by the signs of double
trigonometric terms in the HTCN density. After an extensive sampling of different parameter
values, it is also conjectured that 5 parameters, b, a5, a6, a7 and a8, are related in determining
the presence of skewness of the density. If a5, a6, a7 and a8 are zeros, (1.3) becomes a von
Mises density, i.e. symmetric. When there is no truncation, i.e. b = −π, the density is also
a circular normal, i.e. symmetric regardless of the values of the other 4 parameters. When
b > −π, it is asymmetric except when b = 0. When b = 0, it becomes symmetric bimodal.
When −π < b < 0 and 0 < b < π, the direction of skewness is opposite to each other. For
this reason, a test of asymmetry or bimodality of the density can be provided by determining
whether there is a truncation or not.

Suppose n circular data points θ1, ..., θn represent a sample from a HTCN distribution.
Unless all of a5, a6, a7 and a8 are zeros, as mentioned in the above, the distribution is
asymmetric only when b 6= −π. Using the result in (1.5), asymptotic 100(1−α)% confidence
interval is given by

[max(b̂− zα
2

√
I−1[9, 9],−π),min(b̂− z1−α

2

√
I−1[9, 9], π)],

where zα
2

represents the value in the standard normal distribution whose right tail area is
equal to α

2 . Next, suppose a hypothesis testing for the truncation parameter at α significant
level is performed. The null and alternative hypotheses are given by

H0 : b = −π vs. H1 : π > b > −π,

and the test statistic is given by

b̂√
I−1[9, 9]

.

The critical value is zα. Interval estimation and hypothesis testing for the other parameters
in (1.3) can be established likewise.
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2. Simulation example

In the following, it is shown that the distribution of simulated values from a HTCN density
are asymmetric and/or bimodal. Since the marginal distribution is not in a form of a familiar
univariate circular distribution, the rejection method is employed to generate values of Φ.
φ’s are generated one by one until a value greater than π

4 is observed, where π
4 is the chosen

hidden truncation point. Once a value for Φ greater than π
4 is observed, it is proceeded to

sample a value from the conditional vonMises distribution, which is given by

f(θ|φ) =
exp [h1(φ) cos(θ − h2(φ))]∫
exp [h1(φ) cos(θ − h2(φ))] dθ

, (2.1)

where h1(φ) and h2(φ) are the same as in (1.3). In such a way, 38 observations of Θ are
collected, which represent a sample from the HTCN density shown in (1.3), with the values
of parameters (a1, a2, a3, a4, a5, a6, a7, a8)’= (1,1.2,2,2.1,3,-1,1,3)’. In Figure 2.1, simulated
data sets are plotted using the rose diagram. They evidently illustrate that the hidden
truncation method produces an asymmetric and/or a bimodal circular distribution.
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Figure 2.1 Rose diagrams of samples from the HTCN distribution
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3. Real data example

In this section, we illustrate the goodness of fit of the new distribution using the real life
example found in Fisher (1993). The data set refers to measurements on the orientation
of the nests of 50 noisy scrub birds along the bank of a creek bed. In Figure 3.1, the
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Figure 3.1 Plots of 50 orientations of the nests of the noisy scrub birds

smoothed histogram and the rose diagram of the 50 orientations exhibit that the distribution
is asymmetric and bimodal. The likelihood ratio test is applied to the data set in order
to compare the goodness of fit between two models: one assuming some truncation, i.e.
−π < b < π, and the other with no truncation, i.e. b = −π, where the latter represents the
von Mises distribution that is shown in (2.1). Since the null value in our test, i.e. b = −π,
is a boundary point of the feasible region of the parameter space, instead of invoking the
standard asymptotic distribution theory, we consider a mixture of chi-squared distribution
as the asymptotic distribution of test statistic, which is the special case 5 of Theorem 3 (Self
and Liang,1987) that is a generalization of the results found Chernoff (1954). Here, we write
the special case 5 of Theorem 3. Readers can find more special cases in Self and Liang (1987)
and a proof in Chernoff (1954) Let λn denote the likelihood ratio statistic. The asymptotic
distribution of -2lnλn is given by a 50:50 mixture of χ2

0 and χ2
1, where χ2

0 has a point mass
at 0, i.e. χ2

0 ≡ 0 (Self and Liang, 1987).
The maximum likelihood estimation result for both HTCN densities without truncation

(b = −π) and with some truncation (−π < b < π) are shown in Table 3.1. Our value of the
likelihood ratio test statistic for the hypotheses of no truncation versus some truncation is
given by

−2 lnλn = −2× (106.9− 165.5) = 117.2,

which is larger than 1
2 · 0 + 1

2 · χ
2
0.001,1 = 1

2 · 10.83 = 5.42. Thus, it is concluded that the

truncation parameter estimate b̂(= −1.034) is statistically highly significantly different from
−π at the 0.001 level, providing strong evidence that the new distribution fits much better
than a von Mises distribution for the data set in this example, which is asymmetric and
bimodal.
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Table 3.1 ML estimates for 50 orientations of bird’s nest
a1 a2 a3 a4 a5 a6 a7 a8 LogL

b = −π -7.4 6.1 3.6 -3.2 -1.7 3.9 -0.5 -0.3 165.5
a1 a2 a3 a4 a5 a6 a7 a8 b LogL

−π < b < π 1.4 1.8 0.8 -2.1 2.0 4.3 -5.1 -5.1 -1.9 106.9

4. Conclusion

In this paper, the hidden truncation method is applied to the circular normal conditionals
density in order to propose an asymmetric density called the HTCN. It is shown that the
new density is suitable to model asymmetric and/or bimodal distribution, while many asym-
metric circular distributions can only model an asymmetric distribution. Using simulations
and real data example, the utility of the novel distribution has been demonstrated in this
paper. After trying several other bivariate circular distributions, it is conjectured that the
hidden truncation method applied to other bivariate circular distributions produces asym-
metric circular distributions. Although the new model provides as much flexibility as the
generalized von-Mises or few other asymmetric/bimodal distributions, it is concluded that
these distributions are typically not practical due to their large number of parameters and
the complexity involved. Nevertheless, it is feasible to estimate the models, as demonstrated
in this paper, provided that adequate computational facilities are available to handle the
appropriate numerical approximation methods.
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