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Statistical Inferences for Bivariare Exponential
Distribution in Reliability and Life Testing Problems
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ABSTRACT

In this paper, statistical estimation of the parameters of the bivariate exponential distribution
are studied. Bayes estimators of the parameters are obtained \and compared with the maximum like-
lihood estimators which are introduced by Freund. @ We know that the method of moments estimators
coincide with the maximum likelihood estimators and Bayes estimators are more efficient than the
maximum likelihood estimators in moderate samples. The asymptotic distributions of the maximum
likelihood estimators and the estimator of mean time to system failure are obtained.

1. Introduction

In problem of life testing and reliability analysis, the exponential distribution playes a centra
role as useful statistical model. In a system consisting of complex multicomponents linked in series
or parallel, common assumptions are that the component lifetimes are independent and exponentially
distributed. But occasionally, independent assumption is not applicable in the practical situation. I
such cases Freund (1961), Marshall and Olkin (1967), Downton (1970) and Hawkes (1972) studied the
estimation problems of the reliability.

In this paper we consider the bivariate exponential distribution model introduced by Freunc
(1961). The model denotes the parallel system with two components which functions when one o’
components are failed. Let X; and X, be random variables to denote the lifetimes of two components
A and B, respectively. The lifetimes of components distribute independently and exponentially with
failure rates a and f§, respectively, until first failure time, min(X,, X,). After the time min (X, X,),
the unfailed component’s lifetime distribute exponentially with a new failure rate a’ or §’ according
to B or A failed. This model may realistically represent systems in which the dependence between
X, and X, in such that the failure of one component puts additional burden on the remaining one o1,
alternatively the failure of one component may relieve somewhat the burden on the other. For exampie.
this model is applicable to describe such situations as the failure of paired organs such as lungs, kidneys
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and eyes. In certain types of diseases it is possible that the simultaneous failure of the paired organ
is very rare.

When the failed components are not replaced, Freund (1961) showed that the joint density of
(X,, X5) has

af’exp { - B x2-(a+B-B D) x1}, 0{x1{x2,
fCx1,%9) = (1.1)
ﬁa’eXP{‘a’xl‘(a‘f"ﬁ"a/)xz}, 0<x2<x11

where o §, ®’ and B’ > (. He obtained the moment generating function and the maximum likelihcod
estimators (MLEs) of the parameters of this model, The marginal distributions of (1.1) are not ex-
ponential

Block and Basu (1974) showed that a three-parameter subfamily of Freund’s distributions corres-
ponds to the absolutely continuous component of the bivariate exponential distribution derived by
Marshall and Olkin(1967).

In section 2 we obtain the properties of MLEs and the method of moments estimators (MMI:s)
of the parameters. The asymptotic distributions of MLEs and the mean time to failure (MTTF) of
parallel system with two components are obtained under the Freund’s model.

In section 3 we obtain Bayes estimators of the parameters under the quadratic loss function.

In section 4 we compare the efficiencies of MLEs with Bayes estimators in a moderate sample
size through Monte Carlo simulation. Also we obtain the mean squared error (MSE) and bias of es-
timated MTTF.

2. Asymptotic Properties of MLEs and MMEs
Consider a parallel system with two components whose lifetimes are X, and X,. Suppose that
the joint density of (X,, X,) is (1.1). In a random sample of size z» from a population (1.1) we assume

that components of type A fail first 7 times and components of type B fail first #-7 times. The likeli-
hood function is ex pressed as follows:

L(a,B,a”,8")

= (af’ ) (Ba’ )" Texp{-B Lx-(at+Bf-B )Lx1 - a'T'xi-(at+p-a’,

Yxa}, 0(rdm, 2.1
where 3 x;, = sum of the lifetimes of the components 4 which failed first and Y %y = sumof
the lifetimes of the corresponding components 8, ¥, x, = sum of the lifetimes of the components

B which failed first and )" x, = sum of the lifetimes of the corresponding components A.
Based on the above likelihood function, Freund showed
that
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~ n-r

B :Zx1+Z'xz

~, n-r
D S TIES S 2.
and
.

I§’= 2%z - L%

He also obtained means and variances of MLEs for the fixed 7.

Now, consider the asymptotic properties of the MLEs &, B, & and B'. We write E,. = (&, B, w,
B’y for the MLEs of 8 =(a, B, B). Then we get the following theorem:

Theorem 1. Let Q = ( the second derivatives in (2.1)).
Then,

(a) The random vector )dj\er as 7> > with probability 1.

(b) The random vector ~ 7% (¢, §) has asymptotically the multivariate normal distribution
N(Q, Z)where )}, ! = {—n‘ ! Q} is the information matrix given by

1 1 B a
(at+Ba’ (a+P)B ’ (at+pa’? ’ (at+p)p'?

> = diag ( ). 2.3)

Proof. (a) For sufficiently large n , > ¢ with probability one by the consistency property of
MLE (Rao(1973), page 365).

. -7 -(n-r) ~(n-7r) -r
(b) From(2.1) @ = dlag(a2 , 57 ) P g ),
and 7 is random variable having binomial distribution with parameters x and —al— » Computing

£(Q), we can easily obtain (2.3.). The likelihood function (2.1) satisfies the Cramer conditions
(Rao (1973), page 361) for asymptotic normality. Hence we obtain part (b).

Next, we consider the MMEs @, E, & and [’ of the parameters a, B8, o' and B’ Set
Lx1 3 %1, a4 %2, T x1+Y %2 and » equal to their respective expected values,
Then we obtain the following equations:

a’+8

S R e
Ex; +37x, = n{ﬂé—(—z—%ﬂ} ’
o R
and
. rna
a + 8 °

From the above equations we obtain MMEs as follows:
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Q
li

Exl +ZIXZ ’
5 __ n-7r
_Exl + lez ’
&= 2.4
T ET 2.9)
and
=, r
A -sz - XX

Note that the MMEs in (2.4) coincide with the MLEs in (2.2). The asymptotic properties of MMEs
coincide with the asymptotic properties of MLEs.
On the other hand, we consider the MTTF for parallel system with two components having the
joint density (1.1). The system reliability is F“(I) =P {max(Xl ,X2) D>t } as follows:
i) Forthecase a+ B8*a’ and a+ 8+ 37,

7 _ - a - ﬁ -—(at+tf)
I(t) - (I a‘*"ﬁ"ﬁ’ a"l‘ﬂ_a/ )e ¢ t
.___.a__ﬁ ~B7t ﬁ —art 2.5
+ a+ﬁ_./3’ € +a+ﬁ_a/ € . ( )

ii) Forthecase a + 8 #* a’ and a + 8 = 87,

F(ty = (1 -T‘B--_c?) e™Ft 4 3 —a’ e rate 't (2.6)

ili) Forthecase « + 8 = a’ and a + B # 87,

; — - a__ st hod -8t —-ar .
I(t) _‘(1 a/_ﬁ/ )e +a1_ﬂ/ e +ﬂte . (27)
iv) Forthecase @« + 8 = a’ = B’
F(t) = et +a'te ™", (2.8)
Hence the MTTF based on F(¢) is
w=fF(t)dt
0
_ aa”J,rﬂB’Jra’ﬁ’ ) (2.9)
a’' B’ (a+ 8)

and p is estimated by
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A= aa’+ BR'+ a’f’

where &, B, @ and B’ are the MLEs of the parameters &, $, &' and §’, respectively.

Theorem 2. For MLE [iof u,
(a) [ is an unbiased estimator of u.
(b) \/H(ﬁ - i) has asymptotically the normal distribution N (0, ¢? ) where

1 1 1

o =+ —). .10

o = 2( 5

Proof. (a) Using &, B, @ and givenin (2.2), we have
~ 1 ;N , ‘
z :7{(Zx1+2 x2) + (Z'x1-2" %) +(Zx2-Zx1 )}

By the definitions of Freund’s model, » is random variable having binomial distribution with parameters

#n and , Xx;+X x; israndom variable having gamma distribution with parameters »

a + B
1 . . s . .
and ——, %’ x,-Y' x, is random variable having gamma distribution with parameters 7 - 7

a+ B

1 L . !
and —, and Xx. - £x; israndom variable having gamma distribution with parameters » and — -
a

Hence we obtain

N ~ /+ 14 ’ s

(b) Since fi is a totally differential function of &, B, &' and ﬁ' by Theorem 6a. 2(ii}
on page 387 of Rao (1973), V7 - p) is asymptotically normally distributed with mean zero and
variance 0%, where ¢? = £Xg,;x (corresponding second derivative in (2.9)) and 0, = the (7,;)
element of I given by Theorem 1. After the tedious calculation, we can obtain (2.11).

3. Bayes Estimators

In this section, using Bayesian approach we cons1der the estimation of the parameters a, 8, o'
and §' under the quadratic loss function (¢ - 6)’ (,9 - ¢ ) where (X,, X;) has ajoint density
(1.1

Consider a general class of vague prior distribution given by

gla,f,a’ 8’ ) ! 3.1

a1 B2 a’ 3 ﬂ'cl

where ¢y, ¢y, c3and c,4 are arbitrary positive constants. From (2.1) we have the likelhood function
as follows.

L (a) ﬁva/;ﬂ’|§17iv2)
=(af’ )" (Ba’ )" " exp|-(a+B-8')Zx, - ' S22 -a’S x, -(at+B-a’ )T 2} .

3.2
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The posterior distribution of @, $, &' and 8’ is given by

”(a’ﬁya,rﬁ/|¥1p52)

where

ko

k

’
aclﬂ"la’CSﬁ/CA L(ay 8, a ;B/|§1,9_52)

F(r-ci+1) I'(n-r-cy+1)

F(n-r-c3+1) F'(r-cys+1)

= (2x1+z’x2)7'cl+l (2x1+z'x2)n—r—cz+l

(R x-E xp )t (Zxz -Zxy )77 c4¥t

Then the marginal posterior of « is

I (elxi, x2)

Similarly,

n(a,B,a’, ") dpda’dp’

O 8
Ot &
o g

(le‘f“):/xz)’—c”l
P(T‘L‘)‘I"‘l)

fa (Bl 2y, %,)

_ (Ex4E x )T

I'(n-r-cy+1)

T3 (a/|¥‘ 9’,62)

and

(E/ X1 _Z’xz)n“r‘c:,*l

'(n-r-c3+1)

s (B 1x1,%2)

(Bxz-%xy )77 4"!

f(r-c4+l)

From (3.4) we have that Bayes estimator is given by

*
a

=E(alxi,x2) = [fall, (alxy,%,) da =
0 X
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a’"‘lexp{—(le-f-E/xz)a}, a > 0.

B* " 2, exp {-(Zx1+X 22) B}, B> 0,

a’ "7 exp{-(Z' %1 -Z %2 )a’}, a’ >0

B’ T c4exp {-(Exz‘zxx)ﬁ/}, B> 0.

7"“Cl+l

Tx1+E %,

(3.3)

3.4)

(3.5)

(3.6)

(3.7)

(3.8)



Similarly, from (3.5) to (3.7), we have

ﬁ* _ n-r-cqo+1
Tx+% xp
,* n-r-c3+1
a = i

LA
Tx -2 x,

and
g'* = r-cat1
X — XXy )
Forthecase ¢y =c¢ca=ca=c4=1,

*

which are coincided with MLEs of  (2.2).

4, Empirical Comparison

~ * 7 Sk A,
a :a,ﬁ :ﬁ'a B and ﬂ

(3.9)

(3.100

(3.11"

We can obtain the biases and the mean squared errors(MSEs) of Bayes estimators «*, B*, o™

and §*, respectively, as follows:

1. Bias (a*) = ! {a—-(cl—l)(a+ﬁ)}, n > 1,

+(er ~1) (a+B)((er -1)(atp)-4a)}, n > 2.

n-1
E(a®) = —
MSE(e) = (n-1)(n-2)
2. Bias(87) =——
MSE(B") = 1

+Cea-1)(a+B)((cz-1)(a+p)-48)}, n > 2.

3. Forfixed 7,

_ 2‘6‘3

Bias(a’*) = a’ ,rin-1,

n-r-1

{a((n+2)a+np)

{B-Cco-1)(a+BD}, n > 1,

CENCT)) {B((n+2)B+an)

—y— 2
(n-r-c3+1) a'z—{—{Bias(a'*)}z, y (n-2.

MSE(a’*) =

4. For fixed r, (4.4)

2-¢c
Bias(ﬁ'*): : B8,
-1

MSE(8"™)

C (n-r-1)(n-7r-2)

ICETRIPLE

’ 2 . ,*
_m'Z) 8 +{Bxas(ﬂ )}2,

(4.1)

(4.2)

(4.3)

(4.4)



In this paper, the efficiency of the estimators is measured in terms of the ratio of the sum of the
Cramer-Rao lower bounds of the individual estimators to the sum of the MSEs of the individual estima-
tors. It is given by

Eff. =tr(1,')/EMSE

where IV=wnly,

Estimates of the MSEs are obtained from 400 simulated samples of size 20 and 40, respectively.
In each situation generating two dependent exponential random variables of Freund’s distribution, we
use the method proposed by Friday and Patil (1977). Let us explain it in detail.
Let random variables Y, and Y, be independent with standard exponential distributions and
random variables X, and X, define as follows:
Yya ! if By, { ay,,
X, =
{)'l(a/) '-(a-a’ )y (a’ )" ' if By, ) av,,

and

Yo (B ) '=(B-8")y1(af’ )"t if BY: { aY,,
: :{Yzﬁ‘ if By, > avs,
where «, B, a' and " > 0.

Then X, and X, have the bivariate exponential distribution given by (1.1)
In the samples of size 20 and 40 efficiences of estimators are given in the following tables:

Table 1. Comparison of the Efficiencies of the Estimators
(c1=ca=¢ca=¢4= 2, a=1)

Parameters Efficiencies
n

g o B’ Estimators 20 40
1 1 MLE 0.53 0.76
0.5 Bayes E. 0.75 0.89
MLE 0.48 0.73
05 15 1 Bayes E. 0.72 0.87
! 5 1 MLE 0.45 0.71
Bayes E. 0.69 0.86
1 1 15 MLE 0.61 0.80
' Bayes E. 0.79 0.90
MLE 0.59 0.79
! 15 1.3 Bayes E. 0.78 0.89
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MLE 0.58 0.78
! 2 1.3 Bayes E. 0.77 0.89
MLE 0.42 0.63
3 3 4 Bayes E. 0.69 0.82
MLE 0.44 0.64
3 4 4 Bayes E. 0.70 0.83
4 3 5 MLE 0.35 0.61
Bayes E. 0.65 0.83

The results are as follows;
Bayes estimators are more efficient than MLEs for a =1, ¢1=¢2=¢3=¢ 4= 2 and various value
of other parameters.

Table 2. MSE and Bias of Estimated MTTF (a=1)

n 10 20 40
Parameters
g o g’ MSE BIAS MSE BIAS MSE BIAS
0.5 0.5 1 0.121 0.005 0.061 0.004 0.027 0.002
1 2 1 0.115 0.014 0.060 0.012 0.028 0.011
1 1 1.5 0.100 0.013 0.048 0.010 0.024 0.005
1 1.5 1.5 0.063 0.016 0.035 0.011 0.018 0.001
1 2 1.5 0.055 0.014 0.029 0.013 0.016 0.004

MSE and Bias of estimated MTTF decrease as sample size n increases, which verify paper’s result.
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