• Title/Summary/Keyword: bit error rate

Search Result 1,545, Processing Time 0.024 seconds

Performance of cellular CDMA systems using orthogonal spreading codes in rayleigh fading channels (레일레이 페이딩 채널에서 직교확산부호를 이용한 셀룰러 CDMA 시스팀의 성능)

  • 조현욱;조용석;박상규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.22-30
    • /
    • 1998
  • In this paper, we analyze CDMA systems using M-orthogonal spreading codes. We assume that each user one set of M-orthogonal spreading codes allocated randomaly. The effect of multiple access interference from the reference and adjacent cells is considered slowly frequency selective rayleigh fading channels. and the adjacent cells interference is considered toanalyze the system performance. We calculate bit error rate and the maximum number of users whoe can communicate simulaneously within a cell by suing Rake receiver. By comparing CDMA systemwhich transmits 1 bit/spreding code, our system shows bit error rate decreases as M increases under the same bandwidth and infromation rate.

  • PDF

Generalized SCAN Bit-Flipping Decoding Algorithm for Polar Code

  • Lou Chen;Guo Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1296-1309
    • /
    • 2023
  • In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.

A study on 1 & 2 dimensional minimum mean-squared-error equalization for digital holographic data storage system (디지털 홀로그래픽 데이터 저장 시스템을 위한 1차원 및 2차원 최소 평균-제곱-에러 등화에 관한 연구)

  • 최안식;전영식;정종래;백운식
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.486-492
    • /
    • 2002
  • In this paper. we presented 1 & 2 dimensional minimum mean-squared-error (MMSE) equalization scheme in a digital holographic data storage system to improve bit-error-rate (BER) and to mitigate inter-symbol interference (ISI) which were generated during the data storage and retrieval processes. We showed experimentally for ten data pages retrieved from the holographic storage system that BER and signal-to-noise ratio (SNR) were improved by adopting MMSE equalization.

Unequal Bit - Error - Probability of Convolutional codes and its Application (길쌈부호의 부등 오류 특성 및 그 응용)

  • Lee, Soo-In;Lee, Sang-Gon;Moon, Sang-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.194-197
    • /
    • 1988
  • The unequal bit-error-probability of rate r=b/n binary convolutional code is analyzed. The error protection affored each digit of the b-tuple information word can be different from that afforded other digit. The property of the unequal protection can be applied to transmitting sampled data in PCM system.

  • PDF

Parallel Writing and Detection for Two Dimensional Magnetic Recording Channel

  • Zhang, Yong;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.821-826
    • /
    • 2012
  • Two-dimensional magnetic recording (TDMR) is treated as the next generation magnetic recording method, but because of its high channel bit error rate, it is difficult to use in practices. In this paper, we introduce a new writing method that can decrease the nonlinear media error effectively, and it can also achieve 10 Tb/$in^2$ of user bit density on a magnetic recording medium with 20 Teragrains/$in^2$.

Exact Bit Error Rate Analysis of Partial Relay Selection in Dual-Hop Decode-and-Forward Relaying Systems over Rayleigh Fading Channels (레일레이 페이딩 채널을 고려한 듀얼 홉 디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법의 정확한 비트 오차율 분석)

  • Lee, Sangjun;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The conventional best relay selection based on all the channel information for the first and second hops in dual-hop systems has a large consumption of resources for channel feedback. In this paper, we analyze the average bit error rate for partial relay selection based on the channel information only for the first hop in dual-hop decode-and-forward relaying systems, where we assume independent Rayleigh fading channels. In particular, we provide an exact and closed-form expression for the average bit error rate of M-ary QAM. Also, through numerical investigation, the performance of the partial relay selection is compared with the performance of the best relay selection, and the performance is evaluated for different numbers of relays and various average channel power ratios for the first and second hops.

Characteristics of Bit Error Rate dependence on the Position of Optical Phase Conjugator in 320 Gbps WDM System (320 Gbps WDM 전송 시스템에서 광 위상 공액기의 위치에 따른 비트 에러율 특성)

  • Lee Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, optimal position of optical phase conjugator (OPC) for best compensating distorted WDM channels due to both chromatic dispersion and self phase modulation (SPM) in $8{\times}40$ Gbps WDM systems is numerically investigated, and the eye opening penalty (EOP) and bit error rate (BER) characteristics of overall WDM channels at this position is investigated, comparing with that in case of OPC placed at mid-way of total transmission length. It is confirmed that the compensation extents in WDM system with OPC is more improved by the shifting OPC position from the mid-way of total transmission length, depending on the modulation format and fiber dispersion coefficient. Ant it is confirmed that, from a viewpoint of the reception performance, EOP of each channel is more or less different with one another, but the BER characteristics of overall channels are almost equal.

Rake Receiver Based on Bit Error Rate of Training Sequence Duration for Underwater Acoustic Communication (수중음향통신을 위한 훈련 신호 구간의 비트 오차율에 기반한 레이크 수신기)

  • Son, Ji-hong;Kim, Ki-man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.887-894
    • /
    • 2016
  • In the underwater acoustic communication channels, a multipath reflection becomes the cause of obstacle. To solve this problem, a rake receiver has been required for which one could take the time diversity. However, there is a concern about using incorrect path to recover signals with a high weighting value as underwater acoustic communication channels have severe time-variant property. In order to prevent these problem, a rake receiver is proposed which is based on BER(bit error rate) train sequence duration. The performance is evaluated through lake trials; there are three methods that are a proposed rake receiver, a conventional rake receiver, and a non-rake receiver. As a result, the number of bit errors in the proposed rake receiver, that of bit errors in the conventional rake receiver, and that of bit errors in the non-rake receiver is 8, 45, and 72, respectively.

Multi-Rate and Multi-BEP Transmission Scheme Using Adaptive Overlapping Pulse-Position Modulator and Power Controller in Optical CDMA Systems

  • Miyazawa Takaya;Sasase Iwao
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.462-470
    • /
    • 2005
  • We propose a multi-rate and multi-BEP transmission scheme using adaptive overlapping pulse-position modulator (OPPM) and optical power controller in optical code division multiple access (CDMA) networks. The proposed system achieves the multi-rate and multi-BEP transmission by accommodating users with different values of OPPM parameter and transmitted power in the same network. The proposed scheme has advantages that the system is not required to change the code length and number of weight depending on the required bit rate of a user and the difference of bit rates does not have so much effect on the bit error probabilities (BEPs). Moreover, the difference of transmitted powers does not cause the change of bit rate. We analyze the BEPs of the four multimedia service classes corresponding to the com­binations of high/low-rates and low/high-BEPs and show that the proposed scheme can easily achieve distinct differentiation of the service classes with the simple system configuration.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.