• Title/Summary/Keyword: bipolar process

Search Result 231, Processing Time 0.03 seconds

Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates (연료전지 분리판의 마이크로 채널 제작을 위한 가변성형공정의 실험적 및 수치적 연구)

  • Kim, H.S.;Shim, J.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.499-505
    • /
    • 2012
  • The fuel cell is a very promising power generation system combining the benefits of extremely low emissions, high efficiency, ease of maintenance and durability. In order to promote the commercialization of fuel cells, a flexible forming process, in which a hyper-elastic rubber is adopted as a medium to transmit forming pressure, is suggested as an efficient and cost effective manufacturing method for fuel cell bipolar plates. In this study, the ability of this flexible forming process to produce the micro channel arrays on metallic bipolar plates was first demonstrated experimentally. Then, a finite element (FE) model was built and validated through comparisons between simulated and experimental results. The effects of key process parameters on the forming performance such as applied load and punch velocity were investigated. As a result, appropriate process parameter values allowing high dimensional accuracy without failure were suggested.

Comparator design using high speed Bipolar device (고속 Bipolar 소자를 이용한 comparator 설계)

  • Park Jin-Woo;Cho Jung-Ho;Gu Young Sea;An Chel
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.351-354
    • /
    • 2004
  • This thesis presents Bipolar transistor with SAVEN(Self-Aligned VErtical Nitride) structure as a high-speed device which is essential for high-speed system such as optical storage system or mobile communication system, and proposes 0.8${\mu}m$ BiCMOS Process which integrates LDD nMOS, LDD pMOS and SAVEN bipolar transistor into one-chip. The SPICE parameters of LDD nMOS, LDD pMOS and SAVEN Bipolar transistor are extracted, and comparator operating at 500MHz sampling frequency is designed with them. The small Parasitic capacitances of SAVEN bipolar transistor have a direct effect on decreasing recovery time and regeneration time, which is helpful to improve the speed of the comparator. Therefore the SAVEN bipolar transistor with high cutoff frequency is expected to be used in high-speed system.

  • PDF

Effects of binder type and heat treatment temperature on physical properties of a carbon composite bipolar plate for PEMFCs

  • Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • This study investigated a developed process for producing a composite bipolar plate having excellent conductivity by using coal tar pitch and phenol resin as binders. We used a pressing method to prepare a compact of graphite powder mixed with binders. Resistivity of the impregnated compact was observed as heat treatment temperature was increased. It was observed that pore sizes of the GCTP samples increased as the heat treatment temperature increased. There was not a great difference between the flexural strengths of GCTP-IM and CPR-IM as the heat treatment temperature was increased. The resistivity of GPR700-IM, heat treated at $700^{\circ}C$ using phenolic resin as a binder, was $4829{\mu}{\Omega}{\cdot}cm$ which was best value in this study. In addition, it is expected that with the appropriate selection of carbon powder and further optimization of process we can produce a composite bipolar plate which has excellent properties.

Development and Application Trend of Bipolar Membrane for Electrodialysis (전기투석용 바이폴라막의 개발 및 응용동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.319-331
    • /
    • 2013
  • Electrodialysis with bipolar membranes (EDBM) has recently gained increasing attention for the recovery and production of acids or bases from the corresponding salt solutions and other high value-added business like food processing and biochemical industry. EDBM possesses economical and environmental benefits and can complex with other process such as ion exchange process, extraction and adsorption. So this paper investigates a brief overview of development for bipolar membrane and EDBM with the practical application.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

A Study on the Design and Electrical Characteristics of High Performance Smart Power Device (고성능 Smart Power 소자 설계 및 전기적 특성에 관한 연구)

  • Ku, Yong-Seo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the high performance BCD device structure which satisfies the high voltage and fast switching speed characteristics is devised. Through the process and device simulation, optimal process spec. & device spec. are designed. We adapt double buried layer structure, trench isolation process, n-/p-drift region formation and shallow junction technology to optimize an electrical property as mentioned above. This I.C consists of 20V level high voltage bipolar npn/pnp device, 60V level LDMOS device, a few Ampere level VDMOS, 20V level CMOS device and 5V level logic CMOS.

  • PDF

Association Study of Single-Nucleotide Polymorphism in Lymphotoxin Alpha Gene and Bipolar I Disorder (제1형 양극성 장애와 Lymphotoxin Alpha 유전자 단일염기 다형성 연관 연구)

  • Kim, Sang-Ha;Jun, Tae-Youn
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • Objectives : Proinflammatory process has been implicated as an underlying mechanism of bipolar disorder and schizophrenia. Previous studies have suggested a possible role of lymphotoxin alpha (LTA) gene in the development of schizophrenia and have prompted further investigation in bipolar patients. Association of the LTA +252A/G polymorphism with susceptibility to bipolar I disorder itself as well as with vulnerability among a subset of psychotic bipolar patients were tested. Methods : DNA extraction was done by a standard method and genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method in 114 Korean patients with bipolar I disorder and 202 healthy controls. SPSS v18.0 was used for statistical analysis. Comparisons of the genotype and allele distributions in LTA +252A/G polymorphism were made using a chi-square test. The genotype and allele associations were also evaluated using odds ratio (OR) and 95% confidence interval (CI). Statistical significance was accepted when p was < 0.05. Results : No significant association was found between the LTA +252A/G polymorphism and bipolar disorder. However, LTA +252G allele was present with significantly higher frequency among bipolar patients with psychotic features compared to those without (${\chi}^2$ = 4.69, p = 0.034, OR = 2.495, 95% CI = 1.069-5.827). Conclusion : The results suggest that the allele LTA +252G of the polymorphism may be associated with the psychotic subset of bipolar disorder but not with bipolar I disorder itself. Adequately powered subsequent studies should be conducted.

A Comparative Study of TiN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.179-184
    • /
    • 2011
  • This work investigated the effect of duty cycle and pulse frequency on the microstructures and properties of titanium nitride thin films deposited by asymmetric bipolar pulsed DC sputtering system. Oscilloscope traces of the I-V waveforms indicate high power and high current density outputs during the asymmetric bipolar pulsed mode. The grain size decreases with decreasing duty cycle. The duty cycle has a strong influence not only on the microstructural properties but also on the mechanical properties of titanium nitride films. Comparing with the continuous DC sputtering, the titanium nitride films prepared by pulsed DC asymmetric bipolar process exhibit better properties.