• Title/Summary/Keyword: biomedical data classification

Search Result 128, Processing Time 0.022 seconds

Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection (Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가)

  • Shin, Jaeyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly (심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가)

  • Jeong, Woo-Yeon;Kim, Jung-Hun;Park, Ji-Eun;Kim, Min-Jeong;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.455-461
    • /
    • 2021
  • Cardiomegaly is one of the most common diseases seen on chest X-rays, but if it is not detected early, it can cause serious complications. In view of this, in recent years, many researches on image analysis in which deep learning algorithms using artificial intelligence are applied to medical care have been conducted with the development of various science and technology fields. In this paper, we would like to evaluate whether the Inception V3 deep learning model is a useful model for the classification of Cardiomegaly using chest X-ray images. For the images used, a total of 1026 chest X-ray images of patients diagnosed with normal heart and those diagnosed with Cardiomegaly in Kyungpook National University Hospital were used. As a result of the experiment, the classification accuracy and loss of the Inception V3 deep learning model according to the presence or absence of Cardiomegaly were 96.0% and 0.22%, respectively. From the research results, it was found that the Inception V3 deep learning model is an excellent deep learning model for feature extraction and classification of chest image data. The Inception V3 deep learning model is considered to be a useful deep learning model for classification of chest diseases, and if such excellent research results are obtained by conducting research using a little more variety of medical image data, I think it will be great help for doctor's diagnosis in future.

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.

A FCA-based Classification Approach for Analysis of Interval Data (구간데이터분석을 위한 형식개념분석기반의 분류)

  • Hwang, Suk-Hyung;Kim, Eung-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.19-30
    • /
    • 2012
  • Based on the internet-based infrastructures such as various information devices, social network systems and cloud computing environments, distributed and sharable data are growing explosively. Recently, as a data analysis and mining technique for extracting, analyzing and classifying the inherent and useful knowledge and information, Formal Concept Analysis on binary or many-valued data has been successfully applied in many diverse fields. However, in formal concept analysis, there has been little research conducted on analyzing interval data whose attributes have some interval values. In this paper, we propose a new approach for classification of interval data based on the formal concept analysis. We present the development of a supporting tool(iFCA) that provides the proposed approach for the binarization of interval data table, concept extraction and construction of concept hierarchies. Finally, with some experiments over real-world data sets, we demonstrate that our approach provides some useful and effective ways for analyzing and mining interval data.

The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis (심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류)

  • 이윤선;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

Determining Control Body Dimensions (인체 기본 부위의 결정)

  • 허문열;배미자
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.65-76
    • /
    • 1981
  • Human body structure can be considered as a complex of many elements such as head, chest, arm, leg and etc. As the correct classification of human body is basic for the design of all the materials used by mankind and since we cannot consider all the elements simultaneously, there is a need of extracting a Sew elements which can be "most" representative of all those elements. This paper describes the procedure of determining those representative body dimensions utilizing the data obtained from a national project carried out in 1976. Also the relationship of the above determined body dimensions to the other commonly reference body dimensions are given in linear forms.ear forms.

  • PDF

An Algorithm for Classification of ST Shape using Reference ST set and Polynomial Approximation (레퍼런스 ST 셋과 다항식 근사를 이용한 ST 형상 분류 알고리즘)

  • Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.665-675
    • /
    • 2007
  • The morphological change of ECG is the important diagnostic parameter to finding the malfunction of a heart. Generally ST segment deviation is concerned with myocardial abnormality. The aim of this study is to detect the change of ST in shape using a polynomial approximation method and the reference ST type. The developed algorithm consists of feature point detection, ST level detection and ST shape classification. The detection of QRS complex is accomplished using it's the morphological characteristics such as the steep slope and high amplitude. The developed algorithm detects the ST level change, and then classifies the ST shape type using the polynomial approximation. The algorithm finds the least squares curve for the data between S wave and T wave in ECG. This curve is used for the classification of the ST shapes. ST type is classified by comparing the slopes of the specified points between the reference ST set and the least square curve. Through the result from the developed algorithm, we can know when the ST level change occurs and what the ST shape type is.

A Survey of Transfer and Multitask Learning in Bioinformatics

  • Xu, Qian;Yang, Qiang
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 2011
  • Machine learning and data mining have found many applications in biological domains, where we look to build predictive models based on labeled training data. However, in practice, high quality labeled data is scarce, and to label new data incurs high costs. Transfer and multitask learning offer an attractive alternative, by allowing useful knowledge to be extracted and transferred from data in auxiliary domains helps counter the lack of data problem in the target domain. In this article, we survey recent advances in transfer and multitask learning for bioinformatics applications. In particular, we survey several key bioinformatics application areas, including sequence classification, gene expression data analysis, biological network reconstruction and biomedical applications.

Proposal of a Convolutional Neural Network Model for the Classification of Cardiomegaly in Chest X-ray Images (흉부 X-선 영상에서 심장비대증 분류를 위한 합성곱 신경망 모델 제안)

  • Kim, Min-Jeong;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.613-620
    • /
    • 2021
  • The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.

Data mining Algorithms for the Development of Sasang Type Diagnosis (사상체질 진단검사를 위한 데이터마이닝 알고리즘 연구)

  • Hong, Jin-Woo;Kim, Young-In;Park, So-Jung;Kim, Byoung-Chul;Eom, Il-Kyu;Hwang, Min-Woo;Shin, Sang-Woo;Kim, Byung-Joo;Kwon, Young-Kyu;Chae, Han
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1234-1240
    • /
    • 2009
  • This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.