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Abstract
Machine learning and data mining have found many applications in biological domains, where we look to build predictive models

based on labeled training data. However, in practice, high quality labeled data is scarce, and to label new data incurs high costs. Trans-

fer and multitask learning offer an attractive alternative, by allowing useful knowledge to be extracted and transferred from data in

auxiliary domains helps counter the lack of data problem in the target domain. In this article, we survey recent advances in transfer and

multitask learning for bioinformatics applications. In particular, we survey several key bioinformatics application areas, including

sequence classification, gene expression data analysis, biological network reconstruction and biomedical applications.
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I. INTRODUCTION

With the fast growth of biological technology, there has been

a rapid growth in the need to process biological data. This data

has been made available with lower costs via advanced bio-sen-

sor technologies, and as a result, in the next few years, we

expect to witness a dramatic increase in the application of

genomics in our everyday lives, such as in our personalized

medicine.

Bioinformatics research is interdisciplinary in nature, in that

it integrates diverse areas such as biology and biochemistry,

data mining and machine learning, database and information

retrieval, computer science theory, as well as many others. Bio-

informatics concerns a wide spectrum of biological research,

including genomics and proteomics, evolutionary and systems

biology, etc. These research areas are increasingly dealing with

data collected from a wide spectrum of devices such as microar-

rays, genomic sequencing, medical imaging and so on [1].

Based on this data, data mining in bioinformatics targets the

investigation of learning statistical models to infer biological

properties from new data. Various techniques such as super-

vised learning and unsupervised learning have been developed,

with promising results and biological insights in areas such as

sequence classification, gene expression data analysis and bio-

logical network reconstruction, etc.

A typical assumption in biological data mining is that a suffi-

cient amount of annotated training data is required, so that a

robust classifier model can be trained. In many real-world bio-

logical scenarios, however, labeled training data is lacking.

Sometimes this data can only be obtained by paying a huge

cost. This problem of a lack of labeled training data, which

partly causes the so-called data sparsity problem, has become a

major bottleneck in practice. When data sparsity occurs, over

fitting is common when we train a model. As a result, the statis-

tical model will experience a reduction in performance.

In response to the above problem of data sparsity, various

novel machine-learning methods have been developed. Among

them is the transfer learning framework, which refers to a new

machine learning framework which reuses knowledge from

other domains. Transfer learning aims to extract knowledge

from some auxiliary domains where the data is annotated, but it

cannot be directly used as the training data for a new domain.

To reuse this data, transfer learning compares auxiliary and tar-

get problem domains in order to find useful knowledge that is
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common between them, and then reuses this knowledge to help

boost learning performance in the target domain. A subarea of

transfer learning is multi-task learning, where the target task

and the source task are treated the same, and are learned simul-

taneously. Multitask learning stresses generating benefits for

learning performance improvements in all related domains.

Transfer learning and multi-task learning have achieved great

success in many different application areas over the last two

decades [2, 3], including text mining [4-6], speech recognition

[7, 8], computer vision (e.g., image [9] and video [10] analysis),

and ubiquitous computing [11, 12].

In this article, we give a survey on some recent transfer learn-

ing methods in bioinformatics research, together with an addi-

tional overview on biomedical imaging and sensor based e-

health. We will cover some of the most important application

areas of bioinformatics, including sequence analysis, gene

expression data analysis, genetic analysis, systems biology and

biomedical applications in bioinformatics. By conducting a sur-

vey in these areas, we hope to take stock of the progress made

so far, and help readers navigate through technological advances

in the future.

II. DATA MINING IN BIOINFORMATICS: A SURVEY
OF PROBLEMS

We focus on the following biological problems in this sur-

vey: sequence analysis, gene expression data analysis and

genetic analysis, systems biology, biomedical applications.

A. Biological Sequence Analysis

Biological sequence analysis aims to assign functional anno-

tations to sequences of DNA segments, and is important in our

understanding of a genome. One example is the identification of

splice sites in terms of the exon and intron boundaries, a com-

plex task due to the number of alternative splicing possible.

Other examples include the prediction of regulatory regions that

allow the binding of proteins and determine their functions; the

prediction of transcription start and initiation sites, and the pre-

diction of coding regions. Another important sequence analysis

problem is the major histocompatibility complex (MHC) bind-

ing prediction from a sequence perspective, where sequences

from pathogens provide a huge amount of potential vaccine

candidates [13]. MHC molecules are key players in the human

immune system, and the prediction of their binding peptides

helps in the design of peptide-based vaccines, but there is a

major lack of quality labeled training data that can be used to

build a good prediction model for this binding prediction prob-

lems. In addition, protein subcellular localization prediction

problems are also important in biological sequence analysis, but

annotated locations are difficult to obtain.

B. Gene Expression Analysis and Genetic Analysis

Gene expression analysis and genetic analysis through

microarrays or gene chips is an important task for the under-

standing of proteins and mRNAs. A microarray experiment

measures the relative mRNA levels of genes, which allows us to

compare the gene expression levels of some biological samples

over time in order to understand the differences between normal

cells and cancer cells [14]. One characteristic of this analysis is

that the number of features that correspond to genes is usually

more than the number of samples. This makes it difficult to

apply traditional feature selection approaches directly to this

data to reduce its dimensionality [15]. Another data mining task

often applied to gene expression data is co-clustering, which

aims to cluster both the samples and genes at the same time

[16]. In genetic analysis, recent advances have allowed

genome-wide association studies (GWAS) that can assay hun-

dreds of thousands of single nucleotide polymorphisms (SNPs)

and relate them to clinical conditions or measurable traits. A

combination of statistical and machine learning methods has

been exploited in this area [17, 18].

C. Computational Systems Biology

Computational systems biology refers to the tasks of model-

ing gene-protein regulatory networks, and making inferences

based on protein-protein interaction networks. The computa-

tional challenge relates to the task of integrating and exploring

large-scale, multi- dimensional data with multiple types. An

important issue is how to exploit the topological features of the

network data to help build a high-quality model. Besides auto-

matic prediction based on statistical models, mixed initiative

approaches such as visualization have also been developed to

tackle the large-scale data and complex modeling problems.

D. Biomedical Applications

Biomedical applications investigated in this survey include

biological text mining, biomedical image classification and

ubiquitous healthcare. Biological text mining refers to the task

of using information retrieval techniques to extract information

on genes, proteins and their functional relationships from scien-

tific literature [19]. Today we face a vast amount of biological

information and findings that are published as articles, journals,

blogs, books and conference proceedings. PubMed and MED-

LINE provide some of the most up to date information for bio-

logical researchers. A scientist often has to read through a large

volume of published text in order to understand and find any

potential knowledge embedded in the text. With text mining

technology, many new findings that are published in text for-

mat, such as new genes and their relationships, can be automati-

cally detected, which helps man and machine work together as a

team. 

Furthermore, biomedical image classification is an important

problem that appears in many medical applications. Manual

classification of images is time-consuming, repetitive, and unre-

liable. Given a set of training images labeled into a finite num-

ber of classes, our goal is to design an automatic image

classification method to understand future images. An example

of this is breast-cancer identification from medical imaging data

using computer-aided detection on the screening mammogra-

phy. An important issue for such models is how to reduce the

false-positive rates in the classifications.

Ubiquitous computing is increasingly influencing health care

and medicine and aims to improve traditional health care [20].
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Exercises are essential to keep people healthy. Recently, several

devices have been designed to record and monitor users’ routine

exercises. For example, the accelerometer [21-23] and gyro-

scope [24-26] are used to recognize the users’ activities; Polar

records heart rate to evaluate the amount of activity in terms of

calories in order to manage sports training [27]. Pedometers can

quantify activities in terms of number of steps, and then suggest

the users to reduce or increase the amount of exercise they

undertake [28].

In all the above-mentioned problems, transfer learning plays

an important role for solving the data sparsity problem. Below,

we survey some recent transfer learning studies in these areas.

To start with, we first introduce some notations first that are

used in this survey. The source domain data DS is composed of

data instances xi ∈ XS with their correspondinglabels yi ∈ YS.

Thus we denote the source domain data (X
S
, y

S
) as {( , ),...,

( , )}. Similarly, the target domain data DT is composed of

data instances xi ∈ XT with their corresponding labels yi ∈ YT.

We denote the target domain data (X
T
, y

T
) as {( , ),..., ( ,

)}. The functions fS (·) and  fT (·) denote predictive functions

in the source domain DS and the target domain DT , respectively,

where y
S
 ; fS(X

S
) and y

T
 ; fT(X

T
). When considering multi-task

situations, the data (X
t
, y

t
) of each task t ∈ TN can be repre-

sented by {( , ),..., ( , )}, where TN is the number of

tasks for multi-task learning.

III. BIOLOGICAL SEQUENCE ANALYSIS

In sequence classification, the goal is to annotate gene

sequences or protein sequences from a given set of training

data. As we mentioned above, the process of learning to anno-

tate sequences often suffers from a lack of labeled data, which

often leads too verfitting. To solve this problem, multi-task

learning methods are often used, where it possible to learn to

annotate two or more sets of sequence data together. In this

approach, the sequence data can be from different problem

domains. By learning these tasks together, the lack of labeled

data problem is alleviated.

In multi-task learning, task regularization is an often used.

Task regularization methods are formulated under a regulariza-

tion framework, which consist of two objective function terms:

an empirical loss term on the training data of all tasks, and a

regularization term that encodes the relationships between

tasks. We first introduce a general framework of regularization

based multi-task approach. In their pioneering work, Evgeniou

and Pontil [29] proposed a multi-task extension of support

vector machines (SVMs), which minimizes the following objec-

tive function,

(1)

The first and second terms of Eq. (1) denote the empirical

error and 2-norm of parameter vectors, respectively, which are

the same as those in single-task SVMs. In biological sequence

classification tasks, these terms refer to the errors committed

when making a comparison to the training data. The difference

between single-task SVMs and multi-task SVMs lies in the

third term of Eq. (1), which is designed to penalize large devia-

tions between each parameter vector and the mean parameter

vector of all tasks. The penalized term imposes a constraint that

the parameter vectors in all tasks be similar to each other. In

multi-task sequence classification problems, this term charac-

terizes the extent of knowledge sharing between the learning

tasks in different sequences. With this general background on

SVM-based multitask learning in mind, we now sample a few

well-known works using regularization based approaches, as

well as kernel design for biological sequence analysis. We will

pay attention to applications in splice site recognition and MHC

binding prediction.

One of the first works in multi-task biological sequence clas-

sification was by Widmer et al. [30], who proposed two regular-

ization based multi-task learning methods to predict the splice

sites across different organisms. In order to leverage informa-

tion from related organisms, Widmer et al. [30] suggested two

principled approaches to incorporate relations across various

organisms. The proposed methods were implemented by modi-

fying the regularization term in [29]. However, the relations

between the organisms in [30] was defined by a tree or graph

implied by their taxonomy or phylogeny. The models related to

task t served as prior information for the model of t, such that

the parameter wt of task t is required to be close to the parame-

ters wothers of the other models. This can be achieved by mini-

mizing the norm of the differences of the parameter vectors,

, along with the original loss function. The first

approach trains the models in a top-down manner, where a

model learns for each node in the hierarchy over the datasets of

the tasks spanned by the node and the parent nodes which are

used as the prior information, . The objective

function was given as follows:

(2)

In biology, an organism and its ancestors should be similar

due to inheritance of properties in evolution. This is imposed as

a constraint in the above formula. Another approach adopted by

Widmer et al. [30], is the constraint that  must be

small for related tasks t and t' in their formulation.

(3)

Intuitively, the above formulation states that the properties

associated with similar entities are close to each other. γtt' reflects

evolutionary history before the divergence of the two organ-

isms.

In addition to the above formulations, Widmer et al. [30] also

designed a kernel function that not only considers the data of

the task t, but also the data of its corresponding ancestor rt,

according to a hierarchical structure R, which is defined manu-

ally. The kernel can be derived by defining prediction functions

over the task parameters as well as the parameters of the ances-

tors in terms of the tasks.

(4)
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T
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T
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In Eq. (4), u represents the parameter vectors of leaf nodes

and v represents the parameter vectors of their corresponding

ancestors, which are internal nodes in the hierarchy structure.

Schweikert et al. [31] considered a number of domain trans-

fer learning methods for splice-site recognition across several

organisms. The goal of domain transfer learning is to use a

model from a well-analyzed source domain and its associated

data to help train a model in the target domain. In the formula-

tion of Schweikert et al. [31], C. elegans is the source domain

and C. remanei, P. pacificus and so on are target domains (Fig. 1).

The domain transfer learning methods include (as illustrated

in Fig. 2):

- Combination: As a baseline, the simplest way is to combine

the source domain data and the targetdomain data directly

without considering the weights.

- Convex combination: 

F(x) = α * fT(x) + (1 − α) * fS(x) (5)

where α is the trade-off parameter, which is used to balance the

contributions of the source data and the target data.

- Dual-task learning:

(6)

where both of wS and wT are optimized and can be solved using

a standard QP-solver.

- Kernel mean matching:

= 1,..., nS

(7)

where Φ is the kernel mapping, which projects the data into a

reproducing kernel Hilbert space.

Experimental results presented in [31] showed that the differ-

ences of classification functions for recognizing splice site in

these organisms will increase with increasing evolutionary dis-

tance.

Jacob and Vert [32] designed an SVM algorithm that is able

to learn peptide-MHC-I binding models for many alleles simul-

taneously, by sharing binding information across alleles. The

sharing of information is controlled by a user-defined measure

of similarity between alleles, where the similarity can be defined

in terms of supertypes, or more directly by comparing key resi-

dues known to play a role in the peptide-MHC binding. Jacob

and Vert first represented each pair of alleles a and peptide can-

didates p by a feature vector. Then, using the kernel trick, they

gave the inner product of pairs of alleles and peptides as,

K((p, a), (p', a') = Kpep(p, p') × Kall(a, a') (8)

where for the peptide kernel Kpep, any existing kernel between

peptide representations can be plugged in. For the allele kernel

Kall, the authors exploited some inner product computation

methods to model the relationships across alleles. These allele

kernels include the multitask kernel and supertype kernel [32].

In this formulation, alleles have corresponding multitask ker-

nels such that the training peptides that are shared under the

same supertype and are trained together, allowing the kernels to

reflect the relative distances between the alleles.

In the work of Jacob et al. [33], regularization based models

are used for MHC class-I binding prediction. A novel, multi-

task learning method was implemented by designing a norm or

a penalty term over the set of weights, such that the weight vec-

tors of the tasks within a group are similar to each other. To

achieve this goal, the penalty function was formulated as fol-

lows:

Ω(W) = εMΩmean(W) + εBΩbetween(W) + εWΩwithin(W) (9)

where Ωmean(W) measures the average of weight vectors, Ωbetween(W)

is a measure of inter-cluster variance and Ωwithin(W) is a measure

of in-cluster variance.

Following the pioneering works of Jacob and Vert [32],

Jacob et al. [33], and Widmer et al. [34] in 2010 aimed to

improve the predictive power of the multitask kernel method for

MHC class I binding prediction by developing an advanced ker-

nel based on Jacob and Vert’s orginal. In addition, Widmer et al.

ξ wS, wT{ }( ) C l yi
S T+

, w
T
xi
S T+( ) + λ wS  wT–

i=1

n
S

n
T

+

∑=

Φ̂ xk( ) Φ xk( ) α
1

nS
---- Φ xi( )  

1

nT
----- Φ

i=n
S

1+

n
S

n
T

+

∑ xi( )–
i=1

n
S

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

 ∀i–=

K xi, xi'( ) Φ xi( ), Φ xi'( )〈 〉=Fig. 1. Illustrating source and target domains in biology (adopted from
invited talk by Gunnar Rätsch, Invited Talk at NIPS Transfer Learning
Workshop, December 2009, Whistler, B.C. (Schweikert et al. [31]).

Fig. 2. Four domain adaptation models (adopted from invited talk by
Gunnar Rätsch, Invited Talk at NIPS Transfer Learning Workshop, December
2009, Whistler, B.C. (Schweikert et al. [31]).
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[35] investigated multi-task learning scenarios where there

exists a latent structure shared across tasks. They modeled the

crossover between tasks by defining meta-tasks, so that infor-

mation is transferred between two tasks t and t' with respect to

their relatedness and according to the number of meta-tasks in

which t and t' co-occur. The importance of the meta-tasks was

defined by the learned mixture weights.

As mentioned in Section II, protein subcellular localization

prediction can be categorized as biological sequence analysis.

Xu et al. [36] compared a multitask learning method with a

common feature representation. A common feature representa-

tion approach was adapted from Argyriou et al. [37, 38]. In the

latter paper, Argyriou et al. [38] proposed a multi-task feature

learning method to learn common representations for multi-task

learning under a regularization framework:

(10)

In the above formulation, the first term l(·, ·) denotes the loss

function. U is the common transformation to find a common

representation. The second term is a regularization term that

penalizes the (2,1)-norm of the matrix A, this aims to enforce a

scarcity of common features across the tasks. More specifically,

first computes , the 2-norms of the rows of matrix A

and then computes the 1-norm of the vector ( ,..., ).

This favors solutions in which entire rows of A are zero, which

encourages selecting only features that are useful for all tasks.

Xu et al. [36] conducted extensive experiments to answer the

question: “Can multi-task learning generate more accurate clas-

sifiers than single task learning?” They compared the accuracies

of the test data between the proposed multi-task learning meth-

ods and other prediction model baselines. An example of their

results is summarized in Fig. 3, this illustrates the accuracies of

multi-task feature learning and those of single task learning.

The columns from left to right and rows from up to down repre-

sent different organisms: archaea, bacteria, gneg, gpos, bovine,

dog, fish, fly, frog, human0, human, mouse, pig, rabbit, rat,

fungi, plant0, plant, virus0 and virus in order. Each cell Cij in the

figure is the average result found over 5 random trails. More

specifically, Cij is the result of jointly training these models on

the organism i and the organism j, and using the trained model

fj(·) with the test data from the organism j. For diagonal cells Cij

(shown in gray), Xu et al. [36] trained models on the training

data of organism i only, and evaluated the test data of organism

i as well; these were used as baselines. The cells marked in red

indicate that applying multi-task learning methods gives worse

performance than the baselines, whereas those in light green

indicate that applying multi-task learning methods achieves bet-

ter performance than the baselines. Furthermore, the cells in

dark green or dark grey represent the best performance when

evaluating the test data from each organism in a particular col-

umn. Finally, the cells in white mean the performance result is

missing because some organisms overlap, as in the case of

human0 vs. human, plant0 vs. plant and virus0 vs. virus. For

these pairs, one cannot conduct multi-task learning experi-

ments.

As shown in above figures, the most significant improvement

when using the multi-task learning strategy was about 25%. The

performance of plants, viruses and animals can be improved by

around 10% by using multi-task learning methods. The columns

from left to right and rows from up to down in the table show

different organisms: archaea, bacteria, gneg, gpos, bovine, dog,

fish, fly, frog, human0, human, mouse, pig, rabbit, rat, fungi,

plant0, plant, virus 0 and virus in order. This order arranges

learning tasks based on organisms in super type order; for

example, those organisms that are animals were put together.

Moreover, better results are often obtained near the diagonals,

where organisms are similar, while worse cases were often

located in the cells far from the diagonals. The results in cells

near the diagonals were obtained by training using two rela-

tively similar tasks, like dog and fly, bacteria and archaea, and

so on. To conclude, multi-task learning techniques can gener-

ally help improve the prediction performance for protein sub-

cellular localization in comparison with supervised single-task

learning techniques. Furthermore, the relatedness of tasks may

affect the final performance in the multi-task learning frame-

work.

Liu et al. [39] proposed a cross-platform model based on

multi-task linear regression. They applied the model to multiple

datasets for small interfering RNA (siRNA) efficacy prediction.

Given a representation of siRNAs as feature vectors, a linear

ridge regression model was applied to predict novel siRNA effi-

cacy from a set of siRNAs with known efficacy. Experiments

were run to compare the proposed multi-task learning and tradi-

tional single task learning based on root mean squared error. It

was shown that in siRNA efficacy prediction, there exists a cer-

tain efficacy distribution diversity across the siRNAs bindings

onto different mRNAs. Common properties across different

siRNAs have influence on potent siRNA design. One way to

represent the gene expression data is via a matrix, where gene

samples are rows and gene expression conditions are columns.

There are two categories of rows: control or case, for any sam-

ple. The objective of gene expression classification is to accu-

rately classify new samples based on conditions into case or

control. This problem is particularly challenging because the

data is very imbalanced: the number of samples are often

smaller than the number of features (columns). Furthermore, the

data can be very noisy.

Chen et al. [40] proposed a multi-task method, known as sup-

port vector sample learning (MTSVSL), and demonstrated that

the genes selected by MTSVSL yield superior classification

performance when using cancer gene expression data. They

started by extracting significant samples that reside on support

ξ U, A( ) l yi
t
, αt

T
U

T
xi
t( ) + λ A 2 1,

2

i=1

n
t

∑
t=1

TN

∑=

A 2 1,

2

α
i
2

α
1

2 α
n
t

2

Fig. 3. Summary of determined performances.
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vectors, and then learned two tasks using multiple back-propa-

gation neural networks simultaneously. They configured their

system so that the output of the second task can help refine the

original model. One task is aimed at answering “what kind of

sample is this,” and the second task is “is this sample a support

vector sample?” Their experimental results show that the sec-

ond task can improve classifier performance by incorporating

the generated bias with the original bias obtained from the first

task.

In the area of genetic analysis, one of the main issues faced

today is GWAS. In this area, Puniyan et al. [41] developed a

novel multitask regression based technique to perform joint

GWAS mapping on individuals from multiple populations. Ini-

tially assuming that there is no population structure, the a lasso

function can be formulated as:

(11)

where β
t
 denotes the in-population association strength and t ∈

P denotes the population index. A limitation of the method is

that the model analyzes each population separately without tak-

ing advantage of the relatedness among the shared causal SNPs,

which may lead it to miss the weak association signals for com-

mon SNPs. Puniyani et al. [41] subsequently introduced L1/L2-

regularizer for detecting SNPs in different data,

(12)

In the above equation, B is a m × P matrix, m is the number

of SNPs genotyped and the j-th row βj corresponds to the j-th

SNP in population P. Here, L1 / L2 ensures that the coefficients

βj for the j-th SNP are minimized across all populations. This

helps by reducing the number of false positives.

Both gene expression data analysis and genetic analysis suf-

fer from a lack of sample data due to the high cost of data col-

lection in biology. However, the existence of gene expression

data under various platforms or conditions, and genome-wide

SNP data of different populations provides us with an opportu-

nity to explore relatedness among multiple datasets to alleviate

this data scarcity problem. So far, there have only been a few

works in this field [40-42] that use transfer learning methods in

machine learning. Future studies are expected to explore how to

find the most informative genes or SNPs when classifying dif-

ferent sample conditions by investigating their global character-

istics among multiple datasets. This objective can be achieved

by regularization-based approaches, learning common feature

representation approaches, and distribution matching approaches.

IV. SYSTEMS BIOLOGY

In recent years, the application of transfer learning to systems

biology has become increasingly popular. Transfer learning

techniques implemented by task regularization, distribution

matching, matrix factorization and Bayesian approaches have

all been employed in computational systems biology.

Gene interaction network analysis has been very useful for

gaining insights into various cellular properties. In 2005,

Tamada et al. [43] utilized evolutionary information of two

organisms to reconstruct their individual gene networks. Sup-

pose that we have two organisms A and B with respective gene

expression data DA and DB. The networks of the two organisms

GA and GB are built simultaneously by a hill-climbing algorithm

that maximizes the posterior probability function

P(GA,GB⎪DA,DB,HAB) where HAB models the evolutionary infor-

mation shared between A and B. In order to calculate

P(HAB⎪GA,GB) based on the gene expression data DA and DB,

two free parameters need to be set. In their approach, these two

parameters are chosen empirically.

As a follow-up, in 2008, Nassar et al. [44] proposed a new

score function that captures the evolutionary information shared

between A and B by a single parameter β, instead of choosing

two free parameters. The inputs of their multitask learning algo-

rithm now include data samples D of the given organism, an

input directed acyclic graph (DAG) Gin of the other organism,

and a similarity parameter β. The parameter β in their work rep-

resents the similarity of the true underlying Bayesian networks.

The output derived from the learning algorithm is an improved

DAG structure Gout for the target organism. The procedure can

be repeated for both organisms using the output DAG of one

organism as an input for the other organism.

Kato et al. [45] considered multiple assays where learning

via the sharing of local knowledge occurs, reflected by learning

weights in the formula below:

(13)

where Vt represents the local model of a target node t. Intu-

itively, this formulation employs transfer learning of the target

task with the help of its neighbors’ tasks.

Qi et al. [46] proposed a semi-supervised multi-task frame-

work to predict protein-protein interactions from partially

labeled reference sets. The basic idea is to perform multitask

learning on a supervised classification task and a semi-super-

vised auxiliary task via a regularization term. This is equivalent

to learning two tasks jointly while optimizing the following loss

function:

(14)

Protein-protein interaction prediction is an important aspect

of systems biology. Besides the work of Qi et al. [46], Xu et al.

[47] also explored how to use multitask learning in this area via

a technique known as Collective Matrix Factorization (CMF)

[48]. These methods use similarities of the proteins in two inter-

action networks as the corresponding shared knowledge. They

showed that when the source matrix is sufficiently dense and

similar to the target PPI network, transfer learning is effective

for predicting protein-protein interactions in a sparse network.

Consider a similarity matrix Sm×n introduced as the correspon-

dence between networks G and P. The rows and columns of Sm×n
correspond to proteins in networks G and P, respectively, and

the element Sij of Sm×n represents the similarity between node i

in network G and node j in network P. The collective matrix
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factorization method reconstructs matrices X
t ≈ f1(ZV

T
) and

Xα ≈ f2(UV
T) together by sharing the common factor V. The

objective of collective matrix factorization then is to minimize

the regularized loss:

ζ(Xt, Xα, U, V, Z) = + +

+ + (15)

where

Xt = , Xα =

A sparse multitask regression approach was presented in

[49], where a co-clustering algorithm is applied to gene expres-

sion data with phenotypic signatures. This algorithm can

uncover the dependency between genes and phenotypes. A mul-

titask learning framework with L1 norm regularization is given

as follows

ξ({T, Pd}) = (16)

s.t. = 1, for d = 1,2,..., D

where Td = T·Pd, which represents phenotype responses under

different experimental conditions being projected on the same

low-dimensional space T. In this equation, the first term

enforces a fit between the gene expression and the phenotypic

signature under each condition, while the second term enforcess-

parsity on T.

Bickel et al. [50] studied the problem of predicting HIV ther-

apy outcomes of different drug combinations based on observed

genetic properties of the patients, where each task corresponds

to a particular drug combination. They proposed to jointly train

models of different drug combinations by pooling data together

from all tasks and then use re-sampling weights to adapt the

data for each particular task. The goal is to learn a hypothesis

ft : x→y for each task t by minimizing a loss function with

respect to p(x,y⎪t), where x describes the genotype of the virus

that a patient carries, together with the patient’s treatment his-

tory, y is a class label indicating whether the therapy is success-

ful. Simply pooling the available data for all tasks will generate

a training sample D = . The approach

creates a task-specific re-sampling weight rt(x,y) for each ele-

ment in the pool of examples.

V. BIOMEDICAL APPLICATIONS

Text mining provides rich ground for transfer learning and

multi-task learning applications. In this area, several approaches

to general text mining with transfer learning have been sur-

veyed in [3].

In the biomedical domain, one important area is semantic

role labeling (SRL) systems, these label the roles of genes, pro-

teins and biological entities discussed in textual form. These

texts are often labeled based on manually annotated training

instances, which are rare and expensive to prepare. To solve this

problem, Dahlmeier and Ng [51] formulated SRL in the bio-

medical domain as a transfer learning problem, to leverage

existing SRL resources from the newswire domain. They

employed three domain transfer learning methods: instance

weighting, the augment method and instance pruning. Instance

weighting [6, 52] is aimed at correcting the probability estimate

for the target domain by weighting instances that occur in the

auxiliary data sets. Domain adaptation methods [53] map fea-

tures from the auxiliary and target domains to a common feature

space where knowledge transfer is possible.

In addition to biomedical text mining applications of transfer

learning, Bi et al. [54] formulated the detection of different

types of clinically-related abnormal structures in medical

images using multitask learning. Their method captured task-

dependence by sharing common feature representations, this

was shown to be effective in eliminating irrelevant features and

identifying discriminative features. Given TN tasks, for each

task t, the sample set is composed of input features Xt and label

vector yt. Traditional single-task learning aims to minimize the

objective function: L(at, X
t
, y

t
) + λP(αt) for each task individu-

ally, where the former term is a loss function and the latter term

regularizes the complexity of the model. In [54], a family of

jointly learning algorithms can be derived by rewriting αt = Cβt,

where βt is task-specific while C is a diagonal matrix with a

diagonal vector equal to c ≥ 0. The objective function can be

rewritten as:

) (17)

s.t.P2(c) ≤ γ

where P1 and P2 are regularization operators, and C is a diago-

nal matrix with a diagonal vector equal to c ≥ 0. In other words,

c is an indicator vector showing if a feature is used in the model,

which is then used as a common feature representation across

all tasks.

In the field of sensor-based ubiquitous healthcare, and partic-

ularly in motion-sensor-based activity recognition, collecting

user labeled samples needs huge manual efforts and may

involve privacy issues. Therefore, transfer learning becomes an

attractive approach to solving the data sparsity problem. Here

we give one example of such a work, which transferred the

activity models for a new user by transfer learning [55]. In ear-

lier work, transfer learning was employed to transfer the activity

models learned for a user to another user. Van Kasteren et al.

[56] described a simple method for transferring the transitional

probabilities of two Markov models for two different spaces. In

this work, the aim is to recognize activities in a new space with-

out the expensive data annotation and learning processes. Kas-

teren et al. [56] first mapped data between two sensor networks

via a mapping function. Then their algorithm learned parame-

ters using the labeled data in the source space and unlabeled

data in the target space. In this work, the mapping is generated

manually and the structure of the HMMs is pre-defined. How-

ever, in practice, the mapping and model structure should be

learned.

To address this problem, Rashidi and Cook [57] proposed an

advanced transfer learning approach to transfer activity knowl-

edge learned in a home to another home, in what they call

“Home to Home Transfer Learning” (HHTL). The main compo-

nents of HHTL are illustrated in the Fig. 4. As the figure shows,

HHTL extracts and compresses activity models from the sensor
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data based on label information in a source domain where data

is assumed to have been collected and labeled. This data can

then be used to build activity models that transfer to the target

domain. After extracting activities and their corresponding sen-

sors, source activity models are mapped to target activity mod-

els using a semi-EM framework in an iterative manner. Initially,

sensor mapping probabilities are adjusted based on activity

mapping probabilities. Next, the activity mapping probabilities

are adjusted based on the updated sensor mapping probabilities.

A target activity’s label is determined to be the same as the

source activity’s label when the mapping probability is maxi-

mized.

Subsequently, Rashidi and Cook [58] modified the HHTL

algorithm to transfer the knowledge of learned activities from

multiple source physical spaces. E.g., knowledge transfer is

done from two homes A and B, to a target physical space, e.g.

home C. The modified learning model (MHTL) has the same

first three steps illustrated in Fig. 4, but in the final step, MHTL

adopts a weighted majority voting scheme to assign the final

labels to activities in the target domain.

VI. DATA SETS FOR TRANSFER LEARNING

Several datasets have been released for further research on

transfer learning in biological domains. We list several datasets

available here.

Gene Expression Data: Yeast gene expression data and

human gene expression data are available from ([59], http://

genome-www.stanford.edu/cellcycle/) and ([60], http://www.

stanfore.edu/Human-CellCycle/Hela/), respectively. These two

sets of gene-expression data can be used to reconstruct gene

networks across different organisms. 

Protein-ligand Binding Data: One group of available data is

composed of enzyme-ligand interaction data, G-protein-coupled

receptors (GPCR)-ligand interaction data and ion channel-

ligand interaction data (http://bioinformatics.oxfordjournals.org/

content/24/19/2149/suppl/DC1). Table 1 lists the statistics of

the data. Another group of released ligand interaction data con-

tains four subsets for enzyme, ion channel, GPCR and nuclear

receptors [61] (http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drug-

target/), respectively. The ligand structure similarity matrices

and protein sequence similarity matrices are also included in

these datasets. Interested readers can build models to predict the

protein-ligand binding via a multi-task framework using these

datasets or predict the protein-ligand binding via transferring

knowledge from auxiliary data such as the ligand structure sim-

ilarity matrices and protein sequence similarity matrices.

HIV-1 and Human Interaction Data: Qi et al. [46] prepro-

cessed a HIV-1 and protein interaction dataset (http://www.

cs.cmu.edu/qyj/HIVsemi/), and exploited a semi-supervised multi-

task method to predict HIV-1 and protein interactions.

Protein Interaction Data: Multi-task learning methods for

reconstructing biological networks can be tested on metabolic

network and protein interaction network data, not just on gene

interaction related data. Gold standard metabolic network data,

the corresponding gene expression data and cross-specie

sequence similarities for C. elegans, H. pylor, and S. cerevisi-

aewere released in [62] (http://cbio.ensmp.fr/ yyamanishi/Link-

Propagation/).

Splice Site Data: Acceptor splicing site data for C. elegans,

C. remanei, P. pacificus, D. melanogaster, and A. thaliana are

available (http://www.fml.tuebingen.mpg.de/raetsch/suppl/genom-

edomainadaptation).

VII. SUMMARY

Transfer learning has been employed in various bioinformat-

ics applications and has attracted more attention over recent

years. Below we briefly summarize some bioinformatics appli-

cations using transfer learning techniques (Table 2).

VIII. CONCLUSION AND FUTURE WORK

In this article, we reviewed research work in transfer learning

and multitask learning in the area of bioinformatics and bio-

Fig. 4. Main components of Home to Home Transfer Learning (HHTL)
for transferring activities from a source space to a target space (Rashidi
and Cook [57]). 

Table 1. Statistics of datasets

No. of proteins No. of compounds No. of training data

Enzymes 2,436 675 524

G-protein-coupled receptors 798 100 219

Ion channel 2,330 114 462
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medical applications. These works included regularization based

methods, common feature representation based methods, distri-

bution matching methods and their variants. Transfer learning

has attracted more and more attention in scientific communities,

and has matured over the last few years. Researchers have

begun to investigate and explore many other applications in bio-

informatics using transfer learning. As we have seen, most cur-

rent work on transfer learning is focused on sequence

classification, gene expression data analysis, biological network

reconstruction, biomedical text, image mining, and sensor-

based ubiquitous healthcare. This research aims to alleviate the

data sparsity problem in biological domains. An important

example of real-life transfer learning in bioinformatics is the

GRAIL system (http://www.broadinstitute.org/mpg/grail/), where

transfer learning is conducted across feature spaces. In the

future, more transfer learning applications in bioinformatics are

expected, especially when new data is generated that shares

some biological properties with existing data, where we have

already gained significant insights. Such insights can then be

propagated to new application domains through transfer learning.
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