References
- Cobb J. Outline for the study of scoliosis. instructional course lectures. 1948;5(1):261-275.
- Kadoury S, Labelle, H. Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis. Eur. Spine J. 2012;21(1):40-49. https://doi.org/10.1007/s00586-011-2004-2
- Sibel B, Hayriye K. Rule-based fuzzy classifier for spinal deformities. Biomed Mater Eng. 2014;24(6):3311-3119.
- Imaz CY. Surgical treatment of adolescent idiopathic scoliosis. M.Sc. Dissertation, Ankara University. 2001.
- Trobisch P, Suess O, Schwab F. Idiopathic Scoliosis. Continuing Medical Education. 2010;107(49):875-884. https://doi.org/10.3238/arztebl.2010.0875
- Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Prim. 2015;24(1):1-20.
- Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2018;13(3):1-48. https://doi.org/10.1186/s13013-017-0148-5
- Lenke LG. Lenke classification system of adolescent idiopathic scoliosis: treatment recommendations. Instr Course Lect. 2005;54:537-542.
- Sapountzi-Krepia DS, Valavanis J, Panteleakis GP, Zangana DT, Vlachojiannis PC, Sapkas GC. Perceptions of body image, happiness and satisfaction in adolescents wearing a Boston brace for scoliosis treatment. J Adv Nurs. 2001;35(5):683-690. https://doi.org/10.1046/j.1365-2648.2001.01900.x
- Reamy BV, Slakey JB. Adolescent idiopathic scoliosis: review and current concepts. Am Fam Physician. 2001;64(1):111-116.
- Lee MK, Lee GJ, Song YK, Lim HH. Review on conservative treatment of spinal scoliosis. The Journal of Korea CHUNA Manual Medicine for Spine and Nerves. 2009;4(1):103-117.
- Lonstein JE, BJorklund S, Wanninger MH. Voluntary school screening for scoliosis in Minnesota. J Bone Joint Surg Am. 1982;64(4):481-488. https://doi.org/10.2106/00004623-198264040-00002
- Tu Y, Wang N, Tong F, Chen H. Automatic measurement algorithm of scoliosis Cobb angle based on deep learning. Journal of Physics: Conference Series. 2019;1187(4):042100
- Zhou GQ, Jiang WW, Lai KL, Zheng YP. Automatic Measurement of Spine Curvature on 3-D Ultrasound Volume Projection Image with Phase Features. IEEE Transactions on Medical Imaging. 2017;36(6):1250-1262. https://doi.org/10.1109/TMI.2017.2674681
- Sugita K. Epidemiological study on idiopathic scoliosis in high school students. Prevalence and relation to physique, physical strength and motor ability. Nihon Koshu Eisei Zasshi. 2000;47(4):320-325.
- Oh CH, Kim CG, Lee MS, Yoon SH, Park HC, Park CO. Usefulness of chest radiographs for scoliosis screening: A comparison with thoraco-lumbar standing radiographs. Yonsei Med J. 2012;53(6):1183-1189. https://doi.org/10.3349/ymj.2012.53.6.1183
- Vollmer S, Mateen BA, Bohner G, Kiraly FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927.
- Gstoettner M, Sekyra K, Walochnik N, Winter P, Wachter R, Bach CM. Inter- and intraobserver reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J. 2007;16(10):1587-1592. https://doi.org/10.1007/s00586-007-0401-3
- Yang J, Zhang K, Fan H, Huang Z, Xiang Y, Yang J. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol. 2019;25(2):390.
- Wang H, Zhang T, Cheung KMC, Shea GKH. Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit. EClinicalMedicine. 2021;29(42):101220.
- Wang J, Zhu H, Wang SH, Zhang YD. A review of deep learning on medical image analysis. International Journal of Multimedia Information Retrieval. 2021;26(2):19-38.
- Wua H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVCNet. Med Image Anal. 2018;48:1-11. https://doi.org/10.1016/j.media.2018.05.005
- Song TR, Wei Z. The research of X-ray bone fracture image enhancement algorithms. International Conference on Computer, Mechatronics, Control and Electronic Engineering. 2010;24-26.
- Calderon S, Fallas F, Zumbado M, Tyrrell PN, Stark H, Emersic Z, et al. Assessing the impact of the deceived non local means filter as a preprocessing stage in a convolutional neural network based approach for age estimation using digital hand X-Ray images. IEEE International Conference on Image Processing (ICIP). 2018;7-10.
- Sreenivasulu N, Kishore RM. Color image enhancement using adaptive sigmoid function with bi-histogram equalization. NCICCT. 2015;3(12):1-7.
- Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(60):1-48. https://doi.org/10.1186/s40537-018-0162-3
- Gu S, Pednekar M, Slater R. Improve Image Classification Using Data Augmentation and Neural Networks. SMU Data Science Review. 2019;2(2):1-44.
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ICLR 2015.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Computer Vision and Pattern Recognition. 2015.
- Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. ICML 2019.
- Zhang H, Zhang L, Jiang Y. Overfitting and underfitting analysis for deep learning based end-to-end communication systems. International Conference on Wireless Communications and Signal Processing (WCSP). 2019;23-25.
- Nguyen QH, Ly HB, Ho LS, Al-Ansari N, Le HV, Tran VQ, et al. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering. 2021;2021(6):1-15. https://doi.org/10.1155/2021/4832864