• Title/Summary/Keyword: biomaterials

Search Result 2,062, Processing Time 0.046 seconds

Potential Suppression of Dental Caries by Maltosyl-Mannitol Produced by Bacillus stearothermophilus Maltogenic Amylase

  • Cho Kil-Soon;Shin Sang-Ick;Cheong Jong-Joo;Park Kwan-Hwa;Moon Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.484-486
    • /
    • 2006
  • Maltosyl (G2)-mannitol, produced by the transglycosylation of mannitol with maltotriose by Bacillus stearothermophilus maltogenic amylase, was not found to support lactic acid production by Streptococcus sobrinus NRRL 14555. Furthermore, the synthesis of water-insoluble glucans from maltosyl-mannitol by S. sobrinus NRRL 14555 was much lower than that from xylitol or mannitol. Consequently, these results suggest that maltosyl-mannitol could be used as a noncariogenic sugar substitute in food products.

Silk Protein as a Fascinating Biomedical Polymer: Structural Fundamentals and Applications

  • Ki, Chang-Seok;Park, Young-Hwan;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.935-942
    • /
    • 2009
  • Silk is a textile material, as well as one of the oldest biomaterials. However, the recent progress of biomedical science and technology has led to the replacement of silk by various biomaterials based on synthetic polymers. Despite the wide variety of biomaterials available, these materials suffer certain limitations that prevent them from meeting the various demands of the medical field. Therefore, silk continues to attract considerable interest as a promising biomaterial. This paper explains the fundamentals of silk protein, and reviews the many applications of silk biomedical polymers.

A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics

  • Hermansson, Leif
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.95-107
    • /
    • 2018
  • This presentation will give an overview of Ca-aluminate based biomaterials and their proposed use within the field of nanostructured biomaterials. The paper describes typical features of Ca-aluminate materials with regard to technology, chemistry, biocompatibility including hemocompatibility and bioactivity, and developed microstructure. Special focus will be on the developed microstructure, which is in the nanosize range. Application possibilities within odontology, orthopedics, and drug delivery are presented. The nanostructure including pore size below 5 nm in these structures opens up this material for some use in specific dental-related applications in which antibacterial and bacteriostatic aspects are of importance, and as thin coating on implants within dental and orthopaedic applications. Nanosize porosity is essential in drug delivery systems for controlled release of medicaments. The priority field for Ca-aluminate biomaterials is implant materials, which use minimally-invasive techniques to offer in vivo, on-site developed biomaterials.

Coating defects in polymer-coated drug-eluting stents

  • Bedair, Tarek M.;Cho, Youngjin;Park, Bang Ju;Joung, Yoon Ki;Han, Dong Keun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.131-150
    • /
    • 2014
  • Vascular stenting has a great attention as a treatment for coronary arteries diseases as compared with percutaneous balloon angioplasty. In-stent restenosis and thrombosis are side effects resulting from using bare metal stent (BMS). Employing platelet therapy allowed to reduce the rate of thrombosis, however, the rate of restenosis remains a major problem. In 2002, drug-eluting stents (DESs) were introduced as an effort to reduce the restenosis. The commercially available DESs continue to suffer from coating defects that might lead to a series of adverse effects. Most importantly, multiple concerns remain regarding the polymer coating integrity on metal surfaces or the relation of polymer irregularities to longterm adverse events.

Physical Properties and Biocompatibility of Dental Composite Resins containing Bis-GMA/3MA Prepolymers (Bis-GMA/3MA 프리폴리머를 함유한 치과용 복합레진의 물리적 특성 및 생체친화성)

  • Jun, H.W.;Han, D.K.;Lee, C.W.;Kim, J.M.;Kim, K.M.;Kim, K.N.;Kim, C.S.;Ahn, K.D.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.225-226
    • /
    • 1998
  • 치과용 복합레진으로 사용하기 위해서 새로운 다관능성 메타크릴레이트 유도체를 합성하였으며, 이 유도체와 기존의 Bis-GMA를 혼합하여 새로운 복합레진을 만들었다. 제조된 복합레진의 물리적 물성 및 생체친화성은 기존의 Bis-GMA control보다도 더 우수하였다.

  • PDF

The Fabrication and Characterization of the Photovoltaic Cells Composed of Polydiacetylene and Fullerene

  • Song Jeong-Ho;Kang Tae-Jo;Cho Young-Don;Lee Sun-Hyoung;Kim Jeong-Soo
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.217-222
    • /
    • 2006
  • Propargyl alcohol was coupled to 2,4-hexadiyne-1,6-diol (HDD) and crystallized in the process of ultraviolet irradiation-induced topochemical polymerization. The HDD polymer crystals were used as one component in the fabrication of organic photovoltaic cells, in combination with fullerene as the electron acceptor. The various structures of the produced photovoltaic cells included bilayer, trilayer, and bulk heterojunction structures. Their photovoltaic properties were analyzed in relation to crystal structure, electrochemical properties, and band structure of the HOD polydiacetylene polymers.

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

Graphene and Carbon Quantum Dots-based Biosensors for Use with Biomaterials

  • Lee, Cheolho;Hong, Sungyeap
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Biosensors, which are analysis devices used to convert biological reactions into electric signals, are made up of a receptor component and a signal transduction part. Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) are new types of carbon nanoparticles that have drawn a significant amount of attention in nanoparticle research. The unique features exhibited by GQDs and CQDs are their excellent fluorescence, biocompatibility, and low cytotoxicity. As a result of these features, carbon nanomaterials have been extensively studied in bioengineering, including biosensing and bioimaging. It is extremely important to find biomaterials that participate in biological processes. Biomaterials have been studied in the development of fluorescence-based detection methods. This review provides an overview of recent advances and new trends in the area of biosensors based on GQDs and CQDs as biosensor platforms for the detection of biomaterials using fluorescence. The sensing methods are classified based on the types of biomaterials, including nucleic acids, vitamins, amino acids, and glucose.