Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.2.01

A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics  

Hermansson, Leif (Applied Research Sweden AB)
Publication Information
Abstract
This presentation will give an overview of Ca-aluminate based biomaterials and their proposed use within the field of nanostructured biomaterials. The paper describes typical features of Ca-aluminate materials with regard to technology, chemistry, biocompatibility including hemocompatibility and bioactivity, and developed microstructure. Special focus will be on the developed microstructure, which is in the nanosize range. Application possibilities within odontology, orthopedics, and drug delivery are presented. The nanostructure including pore size below 5 nm in these structures opens up this material for some use in specific dental-related applications in which antibacterial and bacteriostatic aspects are of importance, and as thin coating on implants within dental and orthopaedic applications. Nanosize porosity is essential in drug delivery systems for controlled release of medicaments. The priority field for Ca-aluminate biomaterials is implant materials, which use minimally-invasive techniques to offer in vivo, on-site developed biomaterials.
Keywords
Chemically bonded bioceramics; Ca-aluminate; Nanostructural integration; Dental; Orthopaedic and drug delivery carrier applications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Jarmar, T. Uhlin, U. Höglund, P. Thomsen, L. Hermansson, and H. Engqvist, "Injectable Bone Cements for Vertebroplasty Studied in Sheep Vertebrae with Electron Microscopy," Key Eng. Mater., 361-363 373-76 (2008).
2 L. Hermansson, H. Engqvist, G. Gomez-Ortega, E. Abrahamsson, and K. Bjorklund, "Nanosize Biomaterials Based on Ca-Aluminate," Key Eng. Mater., 49 21-6 (2006).
3 N. Axen, H. Engqvist, J. Loof, P. Thomsen, and L. Hermansson, "In vivo Hydrating Calcium Aluminate Coatings for Anchoring of Metal Implants in Bone," Key Eng. Mater., 284-286 831-34 (2005).   DOI
4 E. Unosson, E. Cai, E. Jiang, J. Loof, and H. Engqvist, "Antibacterial Properties of Dental Luting Agents Potential to Hinder the Development of Secondary Caries," Int. J. Dent., 2012 529495 (2012).
5 L. Hermansson, "Nanostructures and Specific Properties," pp. 57-67 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
6 J. Loof, H. Engqvist, G. Gomez-Ortega, H. Spengler, N.-O. Ahnfelt, and L. Hermansson, "Mechanical Property Aspects of a Biomineral Based Dental Restorative System," Key Eng. Mater., 284-286 741-44 (2005).   DOI
7 L. Hermansson, L. Kraft, K. Lindqvist, N.-O. Ahnfelt, and H. Engqvist, "Flexural Strength Measurement of Ceramic Dental Restorative Materials," Key Eng. Mater., 361-363 873-76 (2008).
8 L. Hermansson, "Dental Applications within Chemically Bonded Bioceramics," pp. 71-9 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
9 C. H. Pameijer, O. Zmener, S. A. Serrano, and F. Garcia-Godoy, "Sealing Properties of a Calcium Aluminate Luting Agent," Am. J. Dent., 23 [2] 121-24 (2010).
10 H. Engqvist, S. Edlund, G. Gomez-Ortega, J. Loof, L. Hermansson, "In Vitro Mechanical Properties of a Calcium Silicate Based Bone Void Filler," Key Eng. Mater., 309-311 829-32 (2006).   DOI
11 A. Faris, H. Engqvist, J. Loof, M. Ottosson, and L. Hermansson, "In Vitro Bioactivity of Injectable Ceramic Orthopaedic Cements," Key Eng. Mater., 309-311 833-36 (2006).   DOI
12 H. Engqvist, T. Persson, J. Loof, A. Faris, and L. Hermansson, "Chemical Stability of a Novel Bioceramic for Stabilisation of Vertebtal Compression," Trends Biomater. Artif. Organs, 21 [2] 98-106 (2008).
13 J. Loof, A. Faris, L. Hermansson, and H. Engqvist, "In Vitro Biomechanical Testing of Two Injectable Materials for Vertebroplasty in Different Synthetic Bone," Key Eng. Mater. 361-363 369-72 (2008).
14 K. Breding and H. Engqvist, "Strength and Chemical Stability due to Aging of Two Bone Void Filler Materials," Key Eng. Mater., 361-363 315-18 (2008).
15 A. Muan and E. F. Osborn, Phase Equilibria among Oxides in Steelmaking; Addison-Wesley, New York, 1965.
16 L. Kraft, Calcium Aluminate Based Cement as Dental Restorative Materials, in Ph.D. Thesis, Uppsala University, Sweden, 2002.
17 J. Loof, Calcium Aluminate as Biomaterial, Design and Evaluation, in Ph.D. Thesis, Uppsala University, Sweden, 2008.
18 L. Kraft, M. Saksi, L. Hermansson, C. H. Pameijer, "A Five Year Retrospective Clinical Study of a Calcium-Aluminate in Retrograde Endodontics," J. Dent. Res., 88 1383 (2009).
19 L. Hermansson, H. Engqvisy, J. Loof, G. Gomez-Ortega, E. Abrahamsson, and K. Bjorklund, "Nanosize biomaterials based on Ca-aluminates," Adv. Sci. Technol., 49 21-6 (2006).   DOI
20 H. Engqvist, M. Couillard, G. A. Botton, M. W. Phaneuf, N. Axen, N.-O. Ahnfelt, and L. Hermansson, "In vivo Bioactivity of a Novel Mineral Based Orthopaedic Biocement," Trends Biomater. Artif. Organs, 19 [1] 27-32 (2005).
21 J. Forsgren, Functional Ceramics in Biomedical Applications, in Ph.D. Thesis, Uppsala University, Sweden, 2010.
22 J. Aberg, Premixed Acidic Calcium Phosphate Cements, in Ph.D. Thesis, Uppsala University, Sweden, 2011.
23 J. Aberg, Ph D Thesis, Uppsala University, Premixed Acidic Calcium Phosphate Cements (2011).
24 A. Krajewski, A. Ravaglioli, E. Roncari, P. Pinasco, and L. Montanari, "Porous Ceramic Bodies for Drug Delivery," J. Mater. Sci.: Mater. Med., 11 [12] 763-67 (2000).   DOI
25 A. Lasserre and P. K. Bajpaj, "Ceramic drug-delivery devices," Crit. Rev. Ther. Drug Carrier Syst., 15 [1] 1-56 (1998).
26 L. Yang, B. Sheldon, and T. J. Webster, "Nanophase Ceramics for Improved Drug Delivery," Am. Ceram. Soc. Bull., 89 [2] 24-32 (2010).
27 H. Engqvist and L. Hermansson, "Chemically Bonded Bioceramics Based on Ca-Aluminates and Silicates," Ceram. Trans., 172 221-28 (2006).
28 J. Park and R. S. Lakes, Biomaterials: An Introduction; Springer, 2007.
29 H. Engqvist, J. E. Schultz-Walz, J. Loof, G. A. Botton, D. Mayer, M. W. Phaneuf, N.-O. Ahnfelt, and L. Hermansson, "Chemical and Biological Integration of a Mouldable Bioactive Ceramic Material Capable of Forming Apatite in vivo in Teeth," Biomaterials, 25 2781-87 (2004).   DOI
30 H. Engqvist, G. A. Botton, M. Couillard, S. Mohammadi, J. Malmström, L. Emanuelsson, L. Hermansson, M. W. Phaneuf, and P. Thomsen, "A New Tool for High-Resolution Transmission Electron Microscopy of Intact Interfaces between Bone and Metallic Implants," J. Biomed. Mater. Res. A, 78 [1] 20-4 (2006).
31 L. Hermansson, J. Loof, and T. Jarmar, "Integration Mechanisms towards Hard Tissue of Ca-Aluminate Based Materials," Key Eng. Mater., 396-398 183-86 (2009).
32 L. Hermansson, "Nanostructures and Specific Properties," pp. 105-29 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
33 H. Engqvist, J.-E. Schultz-Walz, J. Loof, G. A. Botton, D. Mayer, M. W. Phaneuf, N.-O. Ahnfelt, and L. Hermansson "Chemical and Biological Integration of a Mouldable Bioactive Ceramic Material Capable of Forming Apatite in vivo in Teeth," Biomaterials, 25 [14] 2781-87 (2004).   DOI
34 H. Engqvist, G. A. Botton, M. Couillard, S. Mohammadi, J. Malmstrom, L. Emanuelsson, L. Hermansson, M. W. Phaneuf, and P. Thomsen, "A New Tool for High-Resolution Transmission Electron Microscopy of Intact Interfaces between Bone and Metallic Implants," J. Biomed. Mater. Res. A, 78 20-4 (2006).
35 R. B. Martin, "Bone as a Ceramic Composite Material," Mater. Sci. Forum, 293 5-16 (1999).
36 L. Hermansson, "Nanostructural Chemically Bonded Ca-aluminate Based Biomaterials," pp. 47-74 in Biomaterials - Physics and Chemistry, Ed. by R Pignatello, InTech, Rijeka, 2011.
37 L. Hermansson, "Classification and Summary of Beneficial Features of Nanostructural Chemically Bonded Bioceramics," pp. 133-37 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, CRC Press, Boca Raton, 2015.
38 L. L. Hench, "Biomaterials: A Forecast for the Future," Biomaterials, 19 [6] 1419-23 (1998).   DOI
39 S. R. Simon, Orthopaedic Basic Science; Amer Academy of Orthopaedic, 1994.
40 P. F. Heini and U. Berlemann, " Bone Substitutes in Vertebroplasty," Eur. Spine J., 10 205-13 (2001).   DOI
41 I. H. Liebermann, D. Togawa, and M. M. Kayanja, "Vertebroplasty and Kyphoplasty: Filler Materials," Spine J., 5 305-16 (2005).   DOI
42 M. Bohner, "Calcium Ortophosphates in Medicine: from Ceramics to Calcium Phosphate Cements," Injury, 31 [4] 37-47 (2000).
43 H. Engqvist, M. Couillard, G. A. Botton, M. W. Phaneuf, N. Axen, N.-O. Ahnfelt, and L. Hermansson, "In vivo Bioactivity of a Novel Mineral Based Orthopaedic Biocement," Trends Biomater. Artif. Organs, 19 27-32 (2005).
44 L. Kraft, H. Engqvist, and L. Hermansson, "Early-Age Deformation, Drying Shrinkage and Thermal Dilatation in a New Type of Dental Restorative Material based on Calcium Aluminate Cement," Cem. Concr. Res., 34 [3] 439-46 (2004).   DOI