• 제목/요약/키워드: biomarkers

검색결과 1,357건 처리시간 0.028초

Role of Cerebrospinal Fluid Biomarkers in Clinical Trials for Alzheimer's Disease Modifying Therapies

  • Kang, Ju-Hee;Ryoo, Na-Young;Shin, Dong Wun;Trojanowski, John Q.;Shaw, Leslie M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.447-456
    • /
    • 2014
  • Until now, a disease-modifying therapy (DMT) that has an ability to slow or arrest Alzheimer's disease (AD) progression has not been developed, and all clinical trials involving AD patients enrolled by clinical assessment alone also have not been successful. Given the growing consensus that the DMT is likely to require treatment initiation well before full-blown dementia emerges, the early detection of AD will provide opportunities to successfully identify new drugs that slow the course of AD pathology. Recent advances in early detection of AD and prediction of progression of the disease using various biomarkers, including cerebrospinal fluid (CSF) $A{\beta}_{1-42}$, total tau and p-tau181 levels, and imagining biomarkers, are now being actively integrated into the designs of AD clinical trials. In terms of therapeutic mechanisms, monitoring these markers may be helpful for go/no-go decision making as well as surrogate markers for disease severity or progression. Furthermore, CSF biomarkers can be used as a tool to enrich patients for clinical trials with prospect of increasing statistical power and reducing costs in drug development. However, the standardization of technical aspects of analysis of these biomarkers is an essential prerequisite to the clinical uses. To accomplish this, global efforts are underway to standardize CSF biomarker measurements and a quality control program supported by the Alzheimer's Association. The current review summarizes therapeutic targets of developing drugs in AD pathophysiology, and provides the most recent advances in the clinical utility of CSF biomarkers and the integration of CSF biomarkers in current clinical trials.

Discovery of Urinary Biomarkers in Patients with Breast Cancer Based on Metabolomics

  • Lee, Jeongae;Woo, Han Min;Kong, Gu;Nam, Seok Jin;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • 제4권4호
    • /
    • pp.59-66
    • /
    • 2013
  • A metabolomics study was conducted to identify urinary biomarkers for breast cancer, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), analyzed by principal components analysis (PCA) as well as a partial least squares-discriminant analysis (PLS-DA) for a metabolic pattern analysis. To find potential biomarkers, urine samples were collected from before- and after-mastectomy of breast cancer patients and healthy controls. Androgens, corticoids, estrogens, nucleosides, and polyols were quantitatively measured and urinary metabolic profiles were constructed through PCA and PLS-DA. The possible biomarkers were discriminated from quantified targeted metabolites with a metabolic pattern analysis and subsequent screening. We identified two biomarkers for breast cancer in urine, ${\beta}$-cortol and 5-methyl-2-deoxycytidine, which were categorized at significant levels in a student t-test (p-value < 0.05). The concentrations of these metabolites in breast cancer patients significantly increased relative to those of controls and patients after mastectomy. Biomarkers identified in this study were highly related to metabolites causing oxidative DNA damage in the endogenous metabolism. These biomarkers are not only useful for diagnostics and patient stratification but can be mapped on a biochemical chart to identify the corresponding enzyme for target identification via metabolomics.

폐질환 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리결과 변수 (Biomarkers and Surrogate Endpoints for Development of New Drug on Pulmonary Disease)

  • 서정원;이병요;채정우;손추영;강원구;채한정;권광일
    • 약학회지
    • /
    • 제54권2호
    • /
    • pp.75-90
    • /
    • 2010
  • Biomarkers are likely to be important in the study of various pulmonary diseases for many reasons. Research efforts in developing biomarkers and surrogate endpoints of lung diseases have resulted in the identification of new risk factors and novel drug targets, as well as the establishment of treatment guidelines. Government agencies, academic research institutions, diagnostic industries, and pharmaceutical companies all recognize the importance of biomarkers in new drug development and advancing therapies to improve public health. In drug development, biomarkers are used to evaluate early signals of efficacy and safety, to select dose, and to identify the target population. Identification of suitable end points not only would help investigators design appropriate clinical trials but would assist clinicians in caring for this patient population. Though the area of pulmonology has received much attention in the past decades, it still lags behind with regard to the development of biomarkers, particularly those of health effects and susceptibility. This review critically summarized several biomarker researches such as Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study with objectives of identifying the parameters that predict disease progression of COPD, as well as biomarkers that may serve as surrogate end-points.

The Fluorescence Immunoassay of lung Cancer Serum Diomarkers using Quantum dots

  • Kang, Ji-Min;Ahn, Jin-Seok;Kim, Jin-Hoon;Kong, Won-Ho;Park, Keun-Chil;Kim, Won-Seog;Seo, Soo-Won
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권2호
    • /
    • pp.122-128
    • /
    • 2009
  • Cancer serum biomarkers have advanced our ability to more accurately predict tumor classification, prognostic/metastatic potential, and response potential to novel chemotherapies. Serum amyloid A (SAA) and Vascular endothelial growth factor (VEGF) have potential utility as a serum biomarker for lung cancer. Quantum dots, nanometer-sized crystals, have a high quantum yield, sensitivity, and pronounced photostability. The properties of quantum dots can be efficiently applied to the detection of serum biomarkers in immunoassays as fluorescent probe. We used quantum dots as fluorescent probes in immunoassays and attempted to detect serum amyloid A and vascular endothelial growth factor as serum biomarkers of lung cancer. This fluorescence immunoassay based on the properties of quantum dots is applicable to the detection of serum biomarkers for lung cancer. The fluorescence immunoassay with quantum dots should allow the efficient and specific detection of serum amyloid A (SAA) for the possible diagnosis of lung cancer.

Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

  • Heo, Chang-Kyu;Bahk, Young Yil;Cho, Eun-Wie
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.677-685
    • /
    • 2012
  • In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.

Pituitary Adenoma Biomarkers Identified Using Proteomic Fingerprint Technology

  • Zhou, Kai-Yu;Jin, Hang-Huang;Bai, Zhi-Qiang;Liu, Chi-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4093-4095
    • /
    • 2012
  • Objective: To determine whether pituitary adenomas can be diagnosed by identifying protein biomarkers in the serum. Methods: We compared serum proteins from 65 pituitary adenoma patients and 90 healthy donors using proteomic fingerprint technology combining magnetic beads with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Results: A total of 42 M/Z peaks were identified as related to pituitary adenoma (P<0.01). A diagnostic model established based on three biomarkers (3382.0, 4601.9, 9191.2) showed that the sensitivity of diagnosing pituitary adenoma was 90.0% and the specificity was 88.3%. The model was further tested by blind analysis showing that the sensitivity was 88.0% and the specificity was 83.3%. Conclusions: These results suggest that proteomic fingerprint technology can be used to identify pituitary adenoma biomarkers and the model based on three biomarkers (3382.0, 4601.9, 9191.2) provides a powerful and reliable method for diagnosing pituitary adenoma.

Metabolomics Investigation of Cutaneous T Cell Lymphoma Based on UHPLC-QTOF/MS

  • Zhou, Qing-Yuan;Wang, Yue-Lin;Li, Xia;Shen, Xiao-Yan;Li, Ke-Jia;Zheng, Jie;Yu, Yun-Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5417-5421
    • /
    • 2014
  • Objectives: The identification of cutaneous T cell lymphoma (CTCL) biomarkers may serve as a predictor of disease progression and treatment response. The aim of this study was to map potential biomarkers in CTCL plasma. Design and Methods: Plasma metabolic perturbations between CTCL cases and healthy individuals were investigated using metabolomics and ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Results: Principal component analysis (PCA) of the spectra showed clear metabolic changes between the two groups. Thirty six potential biomarkers associated with CTCL were found. Conclusions: Based on PCA, several biomarkers were determined and further identified by LC/MS/MS analysis. All of these could be potential early markers of CTCL. In addition, we established that heparin as a nticoagulant has better pre-treatment results than EDTA with the UHPLC-QTOF/MS appraoch.

Noninvasive molecular biomarkers for the detection of colorectal cancer

  • Kim, Hye-Jung;Yu, Myeong-Hee;Kim, Ho-Guen;Byun, Jong-Hoe;Lee, Cheolju
    • BMB Reports
    • /
    • 제41권10호
    • /
    • pp.685-692
    • /
    • 2008
  • Colorectal cancer (CRC) is the third most common malignancy in the world. Because CRC develops slowly from removable precancerous lesions, detection of the disease at an early stage during regular health examinations can reduce both the incidence and mortality of the disease. Although sigmoidoscopy offers significant improvements in the detection rate of CRC, its diagnostic value is limited by its high costs and inconvenience. Therefore, there is a compelling need for the identification of noninvasive biomarkers that can enable earlier detection of CRC. Accordingly, many validation studies have been conducted to evaluate genetic, epigenetic or protein markers that can be detected in the stool or in serum. Currently, the fecal-occult blood test is the most widely used method of screening for CRC. However, advances in genomics and proteomics combined with developments in other relevant fields will lead to the discovery of novel non invasive biomarkers whose usefulness will be tested in larger validation studies. Here, non-invasive molecular biomarkers that are currently used in clinical settings and have the potential for use as CRC biomarkers are discussed.

Selection of appropriate biomatrices for studies of chronic stress in animals: a review

  • Mohammad, Ataallahi;Jalil Ghassemi, Nejad;Kyu-Hyun, Park
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.621-639
    • /
    • 2022
  • Cortisol and corticosterone, hormones traditionally considered biomarkers of stress, can be measured in fluid biomatrices (e.g., blood, saliva) from live animals to evaluate conditions at sampling time, or in solid biomatrices (e.g., hair, feather) from live or dead animals to obtain information regarding long-term changes. Using these biomarkers to evaluate physiological stress responses in domestic animals may be challenging due to the diverse characteristics of biomatrices for potential measurement. Ideally, a single measurement from the biomatrix should be sufficient for evaluating chronic stress. The availability of appropriate and cost-effective immunoassay methods for detecting the biomarkers should also be considered. This review discusses the strengths and limitations of different biomatrices with regard to ensuring the highest possible reliability for chronic stress evaluation. Overall, solid biomatrices require less frequent sampling than other biomatrices, resulting in greater time- and cost-effectiveness, greater ease of use, and fewer errors. The multiplex immunoassay can be used to analyze interactions and correlations between cortisol and other stress biomarkers in the same biomatrix. In light of the lack of information regarding appropriate biomatrices for measuring chronic stress, this review may help investigators set experimental conditions or design biological research.

Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer

  • Li, Dehong;Yan, Li;Lin, Fugui;Yuan, Xiumei;Yang, Xingwen;Yang, Xiaoyan;Wei, Lianhua;Yang, Yang;Lu, Yan
    • Journal of Gastric Cancer
    • /
    • 제22권4호
    • /
    • pp.306-318
    • /
    • 2022
  • Gastric cancer (GC) is associated with high morbidity and mortality rates. Thus, early diagnosis is important to improve disease prognosis. Endoscopic assessment represents the most reliable imaging method for GC diagnosis; however, it is semi-invasive and costly and heavily depends on the skills of the endoscopist, which limit its clinical applicability. Therefore, the search for new sensitive biomarkers for the early detection of GC using noninvasive sampling collection methods has attracted much attention among scientists. Urine is considered an ideal biofluid, as it is readily accessible, less complex, and relatively stable than plasma and serum. Over the years, substantial progress has been made in screening for potential urinary biomarkers for GC. This review explores the possible applications and limitations of urinary biomarkers in GC detection and diagnosis.