Browse > Article
http://dx.doi.org/10.5230/jgc.2022.22.e28

Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer  

Li, Dehong (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Yan, Li (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Lin, Fugui (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Yuan, Xiumei (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Yang, Xingwen (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Yang, Xiaoyan (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Wei, Lianhua (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Yang, Yang (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Lu, Yan (Gansu Provincial Clinical Research Center for Laboratory Medicine)
Publication Information
Journal of Gastric Cancer / v.22, no.4, 2022 , pp. 306-318 More about this Journal
Abstract
Gastric cancer (GC) is associated with high morbidity and mortality rates. Thus, early diagnosis is important to improve disease prognosis. Endoscopic assessment represents the most reliable imaging method for GC diagnosis; however, it is semi-invasive and costly and heavily depends on the skills of the endoscopist, which limit its clinical applicability. Therefore, the search for new sensitive biomarkers for the early detection of GC using noninvasive sampling collection methods has attracted much attention among scientists. Urine is considered an ideal biofluid, as it is readily accessible, less complex, and relatively stable than plasma and serum. Over the years, substantial progress has been made in screening for potential urinary biomarkers for GC. This review explores the possible applications and limitations of urinary biomarkers in GC detection and diagnosis.
Keywords
Gastric cancer; Diagnostic; Noninvasive detection; Urinary biomarkers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 2016;30:836-848.   DOI
2 Naito Y, Yoshioka Y, Yamamoto Y, Ochiya T. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci 2017;74:697-713.   DOI
3 Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 2019;18:62.
4 Park JY, Kang CS, Seo HC, Shin JC, Kym SM, Park YS, et al. Bacteria-derived extracellular vesicles in urine as a novel biomarker for gastric cancer: integration of liquid biopsy and metagenome analysis. Cancers (Basel) 2021;13:4687.   DOI
5 Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019;18:75.
6 Qian X, Xie F, Wei H, Cui D. Identification of key circulating exosomal microRNAs in gastric cancer. Front Oncol 2021;11:693360.   DOI
7 Dong X, Wang G, Zhang G, Ni Z, Suo J, Cui J, et al. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer. Diagn Pathol 2013;8:45.   DOI
8 Hong CS, Cui J, Ni Z, Su Y, Puett D, Li F, et al. A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PLoS One 2011;6:e16875.   DOI
9 Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J 2011;278:28-45.   DOI
10 Siddhartha R, Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol 2021;426:115593.   DOI
11 Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562-573.   DOI
12 Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix metalloproteinases: a challenging paradigm of cancer management. Semin Cancer Biol 2019;56:100-115.   DOI
13 Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 2006;312:608-622.   DOI
14 Shimura T, Dagher A, Sachdev M, Ebi M, Yamada T, Yamada T, et al. Urinary ADAM12 and MMP-9/NGAL complex detect the presence of gastric cancer. Cancer Prev Res (Phila) 2015;8:240-248.   DOI
15 Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of microvesicles. Biochim Biophys Acta 1981;645:63-70.   DOI
16 Wood SL, Knowles MA, Thompson D, Selby PJ, Banks RE. Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nat Rev Urol 2013;10:206-218.   DOI
17 Bax C, Lotesoriere BJ, Sironi S, Capelli L. Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways. Cancers (Basel) 2019;11:1244.   DOI
18 Tan J, Qin F, Yuan J. Current applications of artificial intelligence combined with urine detection in disease diagnosis and treatment. Transl Androl Urol 2021;10:1769-1779.   DOI
19 Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv 2019;5:eaax8849.   DOI
20 Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics 2015;12:623-636.   DOI
21 Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2016;13:609-626.   DOI
22 Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 2011;8:615-629.   DOI
23 Shao C, Wang Y, Gao Y. Applications of urinary proteomics in biomarker discovery. Sci China Life Sci 2011;54:409-417.   DOI
24 Shimura T, Dayde D, Wang H, Okuda Y, Iwasaki H, Ebi M, et al. Novel urinary protein biomarker panel for early diagnosis of gastric cancer. Br J Cancer 2020;123:1656-1664.   DOI
25 Herrera C, Escalante T, Rucavado A, Fox JW, Gutierrez JM. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Rev Proteomics 2018;15:967-982.   DOI
26 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34:D140-D144.   DOI
27 Sun IO, Lerman LO. Urinary microRNA in kidney disease: utility and roles. Am J Physiol Renal Physiol 2019;316:F785-F793.   DOI
28 Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 2014;87:1-11.   DOI
29 Pejcic M, Stojnev S, Stefanovic V. Urinary proteomics--a tool for biomarker discovery. Ren Fail 2010;32:259-268.   DOI
30 Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004;1:47-53.   DOI
31 Iwasaki H, Shimura T, Yamada T, Okuda Y, Natsume M, Kitagawa M, et al. A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol 2019;54:1061-1069.   DOI
32 Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2019;16:339-362.   DOI
33 Couzin J. Breakthrough of the year. Small RNAs make big splash. Science 2002;298:2296-2297.   DOI
34 Zhang T, Watson DG, Wang L, Abbas M, Murdoch L, Bashford L, et al. Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS One 2013;8:e65880.   DOI
35 Huang R, Shen K, He Q, Hu Y, Sun C, Guo C, et al. Metabolic profiling of urinary chiral amino-containing biomarkers for gastric cancer using a sensitive chiral chlorine-labeled probe by HPLC-MS/MS. J Proteome Res 2021;20:3952-3962.   DOI
36 Chen Y, Zhang J, Guo L, Liu L, Wen J, Xu L, et al. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget 2016;7:87496-87510.   DOI
37 Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 2015;107:63-74.   DOI
38 Burton C, Ma Y. Current trends in cancer biomarker discovery using urinary metabolomics: achievements and new challenges. Curr Med Chem 2019;26:5-28.   DOI
39 Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-1741.   DOI
40 Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004;32:D109-D111.   DOI
41 Yun SJ, Jeong P, Kim WT, Kim TH, Lee YS, Song PH, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol 2012;41:1871-1878.   DOI
42 Biscontin A, Casara S, Cagnin S, Tombolan L, Rosolen A, Lanfranchi G, et al. New miRNA labeling method for bead-based quantification. BMC Mol Biol 2010;11:44.   DOI
43 Meng Y, Eirin A, Zhu XY, Tang H, Chanana P, Lerman A, et al. The metabolic syndrome alters the miRNA signature of porcine adipose tissue-derived mesenchymal stem cells. Cytometry A 2018;93:93-103.   DOI
44 Hung PS, Chen CY, Chen WT, Kuo CY, Fang WL, Huang KH, et al. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS One 2017;12:e0177346.   DOI
45 Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature 2008;455:1054-1056.   DOI
46 Poulsen HE, Specht E, Broedbaek K, Henriksen T, Ellervik C, Mandrup-Poulsen T, et al. RNA modifications by oxidation: a novel disease mechanism? Free Radic Biol Med 2012;52:1353-1361.   DOI
47 Roszkowski K, Jozwicki W, Blaszczyk P, Mucha-Malecka A, Siomek A. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med Sci Monit 2011;17:CR329-CR333.
48 Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med (Berl) 1996;74:297-312.   DOI
49 Borrego S, Vazquez A, Dasi F, Cerda C, Iradi A, Tormos C, et al. Oxidative stress and DNA damage in human gastric carcinoma: 8-oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int J Mol Sci 2013;14:3467-3486.   DOI
50 Chen Q, Hu Y, Fang Z, Ye M, Li J, Zhang S, et al. Elevated levels of oxidative nucleic acid modification markers in urine from gastric cancer patients: quantitative analysis by ultra performance liquid chromatography-tandem mass spectrometry. Front Chem 2020;8:606495.   DOI
51 Kao HW, Pan CY, Lai CH, Wu CW, Fang WL, Huang KH, et al. Urine miR-21-5p as a potential non-invasive biomarker for gastric cancer. Oncotarget 2017;8:56389-56397.   DOI
52 Chan AW, Gill RS, Schiller D, Sawyer MB. Potential role of metabolomics in diagnosis and surveillance of gastric cancer. World J Gastroenterol 2014;20:12874-12882.   DOI
53 Lai S. A human mode of intestinal type gastric carcinoma. Med Hypotheses 2019;123:27-29.   DOI
54 Jayanthi VS, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2017;91:15-23.   DOI
55 Abbas M, Habib M, Naveed M, Karthik K, Dhama K, Shi M, et al. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice. Biomed Pharmacother 2017;95:1082-1090.   DOI
56 Zhang T, Duran V, Vanarsa K, Mohan C. Targeted urine proteomics in lupus nephritis - a meta-analysis. Expert Rev Proteomics 2020;17:767-776.   DOI
57 Chan AW, Mercier P, Schiller D, Bailey R, Robbins S, Eurich DT, et al. (1)H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br J Cancer 2016;114:59-62.   DOI
58 Jors A, Lund MA, Jespersen T, Hansen T, Poulsen HE, Holm JC. Urinary markers of nucleic acid oxidation increase with age, obesity and insulin resistance in Danish children and adolescents. Free Radic Biol Med 2020;155:81-86.   DOI
59 Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--the human metabolome database in 2013. Nucleic Acids Res 2013;41:D801-D807.
60 Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst (Lond) 2012;137:293-300.   DOI
61 Jung J, Jung Y, Bang EJ, Cho SI, Jang YJ, Kwak JM, et al. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann Surg Oncol 2014;21 Suppl 4:S736-S742.
62 Chen JL, Fan J, Lu XJ. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis 2014;35:1032-1039.   DOI
63 Kwon HN, Lee H, Park JW, Kim YH, Park S, Kim JJ. Screening for early gastric cancer using a noninvasive urine metabolomics approach. Cancers (Basel) 2020;12:2904.   DOI
64 Lyu J, Li H, Yin D, Zhao M, Sun Q, Guo M. Analysis of eight bile acids in urine of gastric cancer patients based on covalent organic framework enrichment coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021;1653:462422.   DOI
65 Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-383.   DOI
66 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.   DOI
67 Njoku K, Chiasserini D, Jones ER, Barr CE, O'Flynn H, Whetton AD, et al. Urinary biomarkers and their potential for the non-invasive detection of endometrial cancer. Front Oncol 2020;10:559016.   DOI