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ABSTRACT

Gastric cancer (GC) is associated with high morbidity and mortality rates. Thus, early 
diagnosis is important to improve disease prognosis. Endoscopic assessment represents 
the most reliable imaging method for GC diagnosis; however, it is semi-invasive and costly 
and heavily depends on the skills of the endoscopist, which limit its clinical applicability. 
Therefore, the search for new sensitive biomarkers for the early detection of GC using 
noninvasive sampling collection methods has attracted much attention among scientists. 
Urine is considered an ideal biofluid, as it is readily accessible, less complex, and relatively 
stable than plasma and serum. Over the years, substantial progress has been made in 
screening for potential urinary biomarkers for GC. This review explores the possible 
applications and limitations of urinary biomarkers in GC detection and diagnosis.
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INTRODUCTION

Gastric cancer (GC) is a malignant tumor originating from the gastric mucosa and associated 
with high morbidity and mortality [1,2]. Surgical resection is still considered the best 
treatment approach for GC. However, patients with early-stage cancer are often asymptomatic 
and thus lose their chance to undergo surgery. Therefore, early diagnosis is crucial for 
improving clinical outcomes and prognosis [3,4]. Endoscopic assessment is the most reliable 
imaging method for GC diagnosis, which allows clinicians to collect tissue biopsy and perform 
endoscopic ultrasound to determine the depth of invasion (tumor or T stage). However, it is 
semi-invasive and costly and heavily depends on the skills of the endoscopist, which limits its 
clinical applicability [5]. Other common diagnostic approaches include magnetic resonance 
imaging, X-ray pepsinogen I, and X-ray pepsinogen II. These approaches offer lower sensitivity 
and specificity and are costly. Thus, the search for novel noninvasive biomarkers, especially for 
early-stage GC, has become a hot topic among scientists.

Urine, an ideal biofluid, has gained increasing attention in biomarker discovery. Urine 
is a highly desirable biospecimen for biomarker analysis; it can be easily obtained when 
compared with plasma and serum [6,7]. The application of urinary biomarkers in tumors 
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of the excretory or genitourinary cancer system, such as bladder cancer, prostate cancer, 
and upper urinary tract urothelial carcinoma, has gradually matured, and some urinary 
biomarkers have already completed the confirmatory stages of clinical use [8,9]. Over the 
years, substantial progress has been made in screening for potential urinary biomarkers 
for GC, especially early-stage tumors. However, urine may be affected by age, sex, diet, 
hormonal status, and physical activity [10]. Therefore, the universal applicability of potential 
biomarkers requires further verification, and experimental protocols must be standardized. 
Given that there are different components in the urine, this paper summarizes the research 
field, possible applications, and limitations of urinary biomarkers for GC detection.

DETECTION TECHNIQUES OF BIOMARKERS IN THE URINE

Continuous improvements in urine testing technologies have enabled the identification of 
many substances in urine, especially low-abundance substances, thus further promoting 
the discovery of new biomarkers. Over the last two decades, urine RNomics, proteomics, 
and metabolomics have developed rapidly in parallel with advanced omics and medical 
tests [11]. Microarray technologies, quantitative real-time polymerase chain reaction 
(PCR), and next-generation RNA sequencing have prompted the discovery of many 
urinary microRNAs (miRNAs) in cancer [12]. Additionally, breakthroughs in analytical 
technologies have supported metabolic profiling, making it one of the most rapidly 
expanding disciplines in cancer research. Significant progress has been made in acquiring 
metabolomic data, sampling techniques, experimental techniques, and data characterization 
[13,14]. Furthermore, urinary metabolomics has been advanced by recent technological 
developments in mass spectrometry (MS), nuclear magnetic resonance (NMR), gas 
and liquid chromatography (LC), and capillary electrophoresis (CE), thus improving 
reproducibility and metabolome coverage [15]. Meanwhile, there are several different 
techniques for proteomic studies, including tandem MS (MS/MS), LC-MS, CE-MS, surface-
enhanced laser desorption ionization MS, and array technology have been implemented for 
proteomics analysis of urine and biomarker discovery [16]. Fig. 1 summarizes the applications 
of urine detection technologies for GC urinary biomarker research.

MICRORNAs IN URINE

miRNAs are a class of 21–28 nucleotide noncoding RNAs that mediate gene expression post-
transcriptionally and are involved in carcinogenesis [17,18]. To date, a number of miRNAs 
have been discovered, some of which are candidate biomarkers for early diagnosis [19] and 
are highly stable in tissues and body fluids, including urine [20]. Moreover, studies have 
shown that urinary miRNAs remained unchanged even after seven cycles of freezing and 
thawing or incubation at room temperature for 72 hours [21]. Various technologies such as 
microarray, quantitative real-time PCR, and next-generation RNA sequencing have been 
widely used to analyze miRNA expression profiles in both biofluids and tissues [22-24]. 
Iwasaki et al. demonstrated higher levels of miR-6807-5p and miR-6856-5p in the urine of 
patients with GC than in control subjects. A combination of miR-6807-5p and miR-6856-
5p achieved an area under the curve (AUC) of 0.748, suggesting that these miRNAs could 
be used to diagnose early-stage GC [25]. Another study showed that urinary miR-376c was 
also significantly increased in 20 patients with GC when compared with that of 11 healthy 
individuals, and it displayed 64% specificity and 60% sensitivity, with an AUC of 0.70 
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for GC diagnosis [26]. Moreover, Kao et al. [27] performed a quantitative stem-loop PCR 
assay of miR-21-5pin urinary samples from healthy individuals, preoperative patients, and 
postoperative patients with GC. Compared with healthy controls, patients with GC had 
significantly upregulated miR-21-5p, and urinary miR-21-5p levels showed a clear downward 
trend after tumor tissue resection. Interestingly, another study reported no urinary miR-
21-5p in patients with GC and healthy controls [25]. The different results may be explained 
as follows: 1) The sample sizes were different and could significantly affect the results. 
Therefore, large-scale multicenter studies are warranted to validate these biomarkers. 
2) Cancer biomarkers vary across stages of disease progression, and studies involving 
patients at different stages may report different results. 3) GC is a multifactorial disease, 
and environmental and genetic factors may affect its etiology. There are differences in the 
incidence of GC among different regions and races. Whether or not biomarkers reflect 
disease status across diverse ethnic groups remains unknown. 4) Biomarkers may exhibit 
different expression levels in different subtypes.

In summary, all these data suggest that miRNA in urine may be a promising noninvasive 
diagnostic biomarker of the disease; however, their significance needs to be validated in 
further independent large-scale cohorts.

Table 1 summarizes the literature on urinary miRNAs in GC, focusing on the main aspects of 
the studies presented (i.e., study design, biological function, and results).

DNA AND RNA OXIDATIVE DAMAGE MARKERS IN URINE

Nucleic acids are continuously oxidized in the cell [28], and oxidative modifications of 
nucleic acids are associated with various diseases including cancer [29]. Oxidized nucleosides 
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are fairly water-soluble, are generally excreted into the urine, and do not undergo further 
metabolism [30]. 8-Oxo-7,8-dyhydroguanine (8-oxoGua) and 8-hydroxyguanosine(8-
OHG) are typical markers of oxidative modification of RNA, while 8-oxo-7′8-dihydro-
2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) are markers 
of oxidative modification of DNA. Their urinary concentrations reflect the mean rate of 
oxidatively generated modifications of RNA and DNA in organism [31].

Roszkowski et al. [29] investigated the daily urinary excretion of 8-oxoGua and 8-oxodG in 
a large cohort of 222 patients with malignant cancer, including gastrointestinal cancer, and 
found that the urinary levels of 8-oxoGua and 8-oxodG were significantly higher in the GC 
group than in healthy control group. Furthermore, Borrego et al. [32] confirmed that urinary 
8-oxo-2′-deoxyguanosine(8-oxo-dG) levels were significantly elevated in patients with GC 
and progressively declined after gastrectomy. The latest research successfully quantified 
8-OHdG and 8-OHG in urine using robust solid-phase extraction (SPE) combined with ultra-
performance LC-MS/MS in 70 healthy individuals and 60 patients with GC and found that the 
concentrations of urinary 8-OHdG and 8-OHG were increased dramatically in patients with 
GC, with AUC of 0.777 and 0.841, respectively [33].

Table 2 summarizes urinary DNA and RNA oxidative damage markers for GC.

ENDOGENOUS METABOLITES IN URINE

Metabolites are small substrates and products of metabolism with mass units below 2000 
that drive essential cellular functions [34]. Metabolites represent the integrated outputs 
of the genome, transcriptome, and proteome. Moreover, they reflect the upstream input 
from various external factors, including the environment, diet, lifestyle, and drug exposure 
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Table 1. Summary of potential urinary miRNAs for the early diagnosis of gastric cancer
Type Biomarker Study design Biological function AUC Sensitivity/Specificity Study
miRNA miR-6807-5p/miR-

6856-5p/H. pylori+
Case control design: training cohort: 95 
GC cases, 95 healthy controls; validation 
cohort: 54 GC cases, 54 healthy controls

Upregulated in GC; correlated with 
H. pylori status

GC: 0.885 GC: 76.9%/88.9% Iwasaki et al. 
[25]Stage I GC: 

0.748
Stage I GC: −/−

miRNA miR-376c Case control design: 20 GC cases and 11 
healthy controls

Upregulated in GC; correlated 
with proliferation, migration, and 
anchorage-independent growth

0.70 60%/64% Hung et al. 
[26]

miRNA miR-21-5p Case control design: 50 GC cases and 
healthy controls

Upregulated in GC; correlated with 
disease status

- - Kao et al. 
[27]

miRNA = microRNA; AUC = area under the curve; H. pylori = Helicobacter pylori; GC = gastric cancer; - = no data available.

Table 2. Summary of potential DNA and RNA oxidative damage markers for the early diagnosis of gastric cancer
Type Biomarker Study design Biological function AUC Sensitivity/

Specificity
Study

RNA 8-oxoGua Case control design: 11 gastrointestinal cancer  
cases and 85 healthy controls

Upregulated in GC; correlated with 
oxidative stress situation

- - Roszkowski et al. [29]

RNA 8-OHG Case control design: 60 GC cases and 70 healthy 
controls

Upregulated in GC; correlated with 
occurrence and development

0.841 - Chen et al. [33]

DNA 8-oxodG Case control design: 11 cases of gastrointestinal 
cancer and 85 healthy controls

Upregulated in GC; correlated with 
oxidative stress situation

- - Roszkowski et al. [29]

Case control design: 48 preoperative cases of GC,  
48 postoperative cases, and 48 healthy controls

Upregulated in GC; correlated with 
disease status

- - Borrego et al. [32]

DNA 8-OHdG Case control design: 60 GC cases and 70 healthy 
controls

Upregulated in GC; correlated with 
occurrence and development

0.777 - Chen et al. [33]

AUC = area under the curve; GC = gastric cancer; - = no data available.
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[35]. Metabolic alterations can be used to detect variations in the biology and morphology 
of cancers to guide clinical management decisions [15]. Urine is commonly used for 
profiling metabolic and screening clinical biomarkers [36,37]. To date, various endogenous 
metabolites involved in multiple metabolic pathways have been detected in urine (Fig. 2). For 
example, metabolomics has been used to analyze urine for GC biomarkers [38]. GC’s distinct 
urinary metabolomic profile identification of GC could provide an efficient, non-invasive 
diagnostic modality.

Several studies have examined urinary metabolites for GC detection. Amino acids, bile 
acids, and oxidative nucleic acid metabolites may be used as diagnostic biomarkers for GC. 
A previous study analyzed metabolites in 293 urine samples by gas chromatography coupled 
to mass spectrometry (GC-MS) and found that the urine levels of 10 amino acids (namely, 
valine, alanine, proline, tryptophan, isoleucine, serine, threonine, tyrosine, methionine, 
and glycine) were significantly higher in patients with GC and showed diagnostic ability 
with an AUC from 0.693 to 0.823 [39]. Moreover, Chan et al. detected increased urinary 
alanine concentrations in patients with GC when compared with those in healthy individuals. 
They also established a diagnostic model using alanine, 2-hydroxyisobutyrate (2-HIB), and 
3-indoxylsulfate (3-IS) for GC, with an AUC of corresponding receiver operating characteristic 
curve of 0.95, specificity of 80%, and sensitivity of 95% for predicting GC [40]. A study 
comparing the concentrations of 44 metabolites in the urine of 50 patients with GC and 
50 healthy individuals revealed that alanine, tyrosine, glycolate, glycine, methionine, 
phenylalanine, and arginine levels were significantly increased in patients with GC; 
moreover, the combination of alanine, acetate, 4-hydroxyphenylacetate, and phenylacetyl 
glycine showed high sensitivity and specificity (sensitivity: 86%, specificity: 92%) for GC 
prediction [41]. A further CE-MS metabolomics study found increased lactic acid, valine, 
leucine, arginine, and isoleucine levels in patients with GC when compared with control 
subjects. However, histidine, aspartate, citric acid, succinate, malic acid, methionine, 
and serine were markedly decreased in patients with GC [42]. Kwon et al. [43] employed 
NMR metabolomics to urine samples to compare urinary metabolites in 103 patients with 
GC and 100 age- and sex-matched healthy control subjects. In this study, the population 
included more patients with stage I disease (66.99%). They found that phenylalanine, 
alanine, creatinine, hippurate, citrate, glycerol, creatine, 3-hydroxybutyrate, and taurine were 
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significantly different between healthy individuals and patients with GC, with AUCs ranging 
from 0.632 to 0.936. Furthermore, the early-stage GC diagnostic model exhibited a specificity 
of 97% and a sensitivity of 94.7%. They also found that urinary metabolomics had a higher 
diagnostic value than CEA, CA19-9, and CA72-4 levels. A more recent study demonstrated 
that the levels of D-serine (D-Ser) and D-isoleucine (D-Ile) were significantly higher in the 
GC group than in the healthy group, while the levels of β-(pyrazol-1-yl)-L-alanine (L-PA) in the 
GC group were lower than those in the HC group. Univariable analysis of age, L-PA, D-Ser, 
and D-Ile showed that their AUC values ranged from 0.760 to 0.895, while multivariate model 
analysis showed that the AUC of the combined indicators was 0.977, showing great potential 
in diagnosing GC [38].

Lyu et al. [44] used an SPE column that contains a covalent organic framework material 
coupled to LC-MS/MS to quantitatively analyze samples from patients with GC and 
healthy control subjects. They found that the levels of hyodeoxycholic acid, cholic acid, 
and chenodeoxycholic acid were significantly higher in patients with GC, while the 
glycochenodeoxycholic acid level in patients with GC was significantly lower than that in 
control subjects. These bile acids achieved favorable diagnostic performance with AUCs of 
0.854, 0.851, 0.753, and 0.769, respectively.

Table 3 summarizes the urinary metabolites used for GC detection.

EXTRACELLULAR VESICLES (EVs) AND EXOSOMES IN 
URINE
EVs are nano-sized membrane vesicles containing nucleic acids, lipids, and proteins, which 
play important roles in intercellular communication by transferring their components to 
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Table 3. Summary of potential urinary metabolites for the early diagnosis of gastric cancer
Type Biomarker Study design Biological function AUC Sensitivity/

Specificity
Study

Metabolites 10 amino acids (alanine, glycine, 
valine, isoleucine, serine, threonine, 
proline, methionine, tyrosine, and 
tryptophan)

Case control design: 112 
GC cases and 87 healthy 
controls

Upregulated in GC; correlated 
with occurrence and prognosis

0.693–0.823 62.3%–91.5%/ 
41.4%–78.2%

Chen et 
al. [39]

Metabolites 2-hydroxyisobutyrate (2-HIB), 
3-indoxylsulfate(3-IS), and alanine

Case control design: 43 GC 
cases, 40 BN controls, and 
40 healthy controls

Correlated with establishing 
diagnostic regression model

0.95 95%/80% Chan et 
al. [40]

Metabolites Alanine, acetate, 
4-hydroxyphenylacetate, phenylacetyl 
glycine

Case control design: 50 
GC cases and 50 healthy 
controls

Upregulated in GC; correlated 
with T stage

- 86%/92% Jung et al. 
[41]

Metabolites Methionine, arginine, leucine, serine, 
aspartate, valine, isoleucine, histidine, 
succinate, citric acid, malic acid, lactic 
acid

Case control design: 26 
GC cases and 14 healthy 
controls

5 metabolites were upregulated 
in GC and 7 metabolites 
were downregulated in GC; 
correlated with disease stage

1.000 - Chen et 
al. [42]

Metabolites Alanine, citrate, creatine, creatinine, 
glycerol, hippurate, phenylalanine, 
taurine, and 3-hydroxybutyrate

Case control design: 103 
GC cases and 100 healthy 
controls

6 metabolites were upregulated 
in GC and 3 metabolites 
were downregulated in GC; 
correlated with specific genes

0.632–0.936 50%–90%/ 
70%–90%

Kwon et 
al. [43]

Metabolites β-(pyrazol-1-yl)-L-alanine, D-serine, 
D-isoleucine

Case control design: 84 
GC cases and 80 healthy 
controls

2 metabolites were upregulated 
in GC and 1 metabolite was 
downregulated in GC; correlated 
with H. pylori status

0.670–0.889 - Huang et 
al. [38]

Metabolites Hyodeoxycholic acid, cholic acid, 
glycochenodeoxycholic acid, and 
chenodeoxycholic acid

Case control design: 76 
GC cases and 32 healthy 
controls

3 metabolites were upregulated 
in GC and 1 metabolite was 
downregulated in GC

0.753–0.854 - Lyu et al. 
[44]

AUC = area under the curve; GC = gastric cancer; BN = benign gastric disease; - = no data available.
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recipient cells [45]. EVs secreted from cancer cells participate in fibrosis, angiogenesis, 
metastasis, and evasion of immune surveillance [46,47]. EVs can be found in various body 
fluids such as plasma, urine, breast milk, saliva, semen, lymphatic fluid, cerebrospinal 
fluid, sputum, amniotic fluid, and synovial fluid [48]. Urinary EVs appear to be particularly 
promising for the early diagnosis of GC. A prospective study performed metagenome analysis 
using body fluid samples (gastric juice, urine, and blood) to examine the distinct microbial 
composition of bacteria-derived EVs from patients with GC. Among the four sample types 
of prediction models, the model using urine samples showed the highest AUC of 0.823, with 
67.7% sensitivity, 84.9% specificity, and 76.1% accuracy [49].

Exosomes are EVs of 30–150 nm in diameter that are present in almost all body fluids 
and contain miRNAs, mRNA, lncRNAs, and proteins [50,51]. Exosomes can regulate the 
expression of target genes, signal pathways, and cell transformation of receptor cells by 
mediating information transmission between tumor cells and the tumor microenvironment, 
which have become important mediators of tumorigenesis, tumor growth, angiogenesis, 
and metastasis [52] and have been identified as prognostic and diagnostic biomarkers for 
cancer (Fig. 3). Qian et al. [53] applied next-generation sequencing technology to identify 
exosomal miRNAs in the serum and urine of patients with GC and healthy individuals and 
found urinary exosomal hsa-miR-1246 upregulation and hsa-miR-139-5p and hsa-miR-345-5p 
downregulation in GC.

https://doi.org/10.5230/jgc.2022.22.e28
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Fig. 3. Exosomes take part in multiple biochemical processes involved in cancer and are present in almost all body fluids. This image was created using 
BioRender (http://biorender.com/; accessed on June 29, 2020).

http://biorender.com/


313https://jgc-online.org

PROTEINS IN URINE

Urinary proteins may be used for the early diagnosis of GC. Dong et al. [54] found that the 
protein expression levels of endothelial lipase (EL) in the GC group were significantly lower 
than those in the normal groups, and EL was proposed to act as a promising diagnostic 
marker of GC, because it achieved an AUC of 0.967 and a 95% confidence interval (CI) of 
(0.942–0.993). A study based on a computational method for the prediction of excretory 
proteins confirmed that urinary EL was substantially reduced in patients with GC, obtaining 
an AUC greater than 0.9, with true positive and false positive rates of 85% and 9.5%, 
respectively [55].

Metalloproteinases, a group of zinc-dependent proteinases, activate a water molecule that 
performs a nucleophilic attack on the scissile peptide bond [56]. Matrix metalloproteinases 
(MMPs) belong to the family M10 of metalloproteinases [57], which degrade various 
proteins in the extracellular matrix and regulate growth factors, cytokines, chemokines, 
and cytoskeletal proteins [58]. MMPs are involved in a wide range of biological processes 
such as cellular differentiation, tissue repair morphogenesis, embryogenesis, cell mobility, 
angiogenesis, cell proliferation, migration, wound healing, apoptosis, and main reproductive 
events, such as ovulation and endometrial proliferation [59]. MMPs are recognized as 
boosters in tumorigenesis [60]. ADAMs (a disintegrin and metalloproteases), a family 
of MMP related to metalloproteinases, are involved in cell adhesion, cell signaling, and 
proteolytic processing of numerous transmembrane proteins and play important roles in 
tumor progression and metastasis [61]. A previous study found increased MMP-9/NGAL 
(neutrophil gelatinase-associated lipocalin) complex and ADAM12 in the urine of patients 
with GC compared to healthy control subjects, and a combination of MMP-9/NGAL complex 
and ADAM12 showed 77.1% sensitivity and 82.9% specificity, with an AUC of 0.825 for the 
diagnosis of GC [62].

Many proteomics-based biomarkers that rely on single proteins are currently being used for 
clinical diagnosis. However, because of the lack of specificity of single biomarkers, a step has 
been made toward identifying and validating panels of biomarkers rather than attempting 
to identify a unique ideal diagnostic candidate that might not exist [63]. Urinary proteomics 
used to search for early markers has gained increasing attention because the complexity of 
the urinary proteome is lower than that of the plasma proteome, making it easier to detect 
low-abundance protein changes [64]. A proteomics study was used to screen urine diagnostic 
markers of GC; the study revealed that urinary levels of TFF1 (trefoil factor 1), ADAM12 (a 
disintegrin and metalloproteinase domain–containing protein 12), PGA3 (pepsinogen 3), 
and BARD1 (BRCA1-associated RING domain 1) were significantly higher in the GC group 
than in the healthy control group. Moreover, uTFF1and uADAM12 appeared to be significant 
independent proteins for GC diagnosis. In addition, these combination biomarkers displayed 
an important diagnostic value for GC (AUC of uTFF1+uADAM12 0.815, 95% CI, 0.754-0.877; 
AUC of uTFF1 + uADAM12+ Helicobacter pylori 0.832, 95% CI, 0.773–0.892). These proteins 
display sex-specific effects; for male GC, the panel of uTFF1/uADAM12/H. pylori demonstrated 
good performance with an AUC of 0.858, whereas for female GC, another combination of 
uTFF1/uBARD1/H. pylori also achieved an AUC of 0.893 [65].

Despite some progress, urinary proteomics research and clinical translation remain in 
their infancy, as some major problems have not yet been resolved. Specimen collection, 
processing, and fractionation schemas, as well as analytical platform differences and data 
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reduction method variables, create barriers to interlaboratory comparisons [66]. Hence, 
standardization processes and applicable data normalization methods are required. Defining 
urinary protein levels in healthy individuals remains an important and challenging problem. 
Age, sex, diet, exercise, diurnal variation, and hormone status contribute to differences in the 
proteomics of normal urine [67]. Large-scale longitudinal studies of individuals are needed 
to establish a reference interval for urinary proteomics.

Table 4 summarizes the urinary proteins used for GC detection.

FUTURE PERSPECTIVE

Urine is an ideal biofluid for biomarker discovery in GC. Urinary miRNAs, proteins, and 
metabolites have all been reported as possible biomarkers of GC. The current large research 
output and financial investment in this area undoubtedly confirm the great expectations for 
the potential urinary analysis might have. Nevertheless, owing to a lack of robust validation, 
evidence is insufficient to support their clinical use. Most studies on urinary biomarkers for 
GC diagnosis have been small-scale. Therefore, further research with a larger sample size 
is required. Choosing a greater number of patients, including low-prevalence populations 
and premalignant conditions such as intestinal metaplasia and atrophic gastritis, helps 
represent the areal screening population. With rapid developments in computer technology 
and medicine, using artificial intelligence to combine “signals” from multiple patterns 
will facilitate the process of discovery and verification. In addition, combining different 
biomarker values, clinical evidence, and biochemical parameters will be a great strategy to 
increase the diagnostic accuracy.
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