Browse > Article
http://dx.doi.org/10.5187/jast.2022.e38

Selection of appropriate biomatrices for studies of chronic stress in animals: a review  

Mohammad, Ataallahi (Department of Animal Industry Convergence, Kangwon National University)
Jalil Ghassemi, Nejad (Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University)
Kyu-Hyun, Park (Department of Animal Industry Convergence, Kangwon National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.4, 2022 , pp. 621-639 More about this Journal
Abstract
Cortisol and corticosterone, hormones traditionally considered biomarkers of stress, can be measured in fluid biomatrices (e.g., blood, saliva) from live animals to evaluate conditions at sampling time, or in solid biomatrices (e.g., hair, feather) from live or dead animals to obtain information regarding long-term changes. Using these biomarkers to evaluate physiological stress responses in domestic animals may be challenging due to the diverse characteristics of biomatrices for potential measurement. Ideally, a single measurement from the biomatrix should be sufficient for evaluating chronic stress. The availability of appropriate and cost-effective immunoassay methods for detecting the biomarkers should also be considered. This review discusses the strengths and limitations of different biomatrices with regard to ensuring the highest possible reliability for chronic stress evaluation. Overall, solid biomatrices require less frequent sampling than other biomatrices, resulting in greater time- and cost-effectiveness, greater ease of use, and fewer errors. The multiplex immunoassay can be used to analyze interactions and correlations between cortisol and other stress biomarkers in the same biomatrix. In light of the lack of information regarding appropriate biomatrices for measuring chronic stress, this review may help investigators set experimental conditions or design biological research.
Keywords
Animals; Stress biomarkers; Biomatrix; Enzyme immunoassay; Stress;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Burdett S. Exploring the relationships between behavioural responses to stress and performance, carcass composition, energy expenditure and macronutrient oxidation in restrict fed female Yorkshire pigs [Ph.D. dissertation]. Guelph, ON: The University of Guelph; 2019.
2 Ghassemi Nejad J, Sung KI. Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation. J Anim Sci Technol. 2017;59:1-6. https://doi.org/10.1186/s40781-017-0140-x   DOI
3 Moberg GP, Mench JA. The biology of animal stress: basic principles and implications for animal welfare. Wallingford, Oxon: CABI; 2000.
4 Victoria Sanz Fernandez M, Johnson JS, Abuajamieh M, Stoakes SK, Seibert JT, Cox L, et al. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs. Physiol Rep. 2015;3:e12315. https://doi.org/10.14814/phy2.12315   DOI
5 Meyer JS, Novak MA. HPA axis. In: Fuentes A, editor. The international encyclopedia of primatology. Chichester, UK: Wiley Blackwell; 2017. p.597-8.
6 Choe SJ, Kim D, Kim EJ, Ahn JS, Choi EJ, Son ED, et al. Psychological stress deteriorates skin barrier function by activating 11β-hydroxysteroid dehydrogenase 1 and the HPA axis. Sci Rep. 2018;8:6334. https://doi.org/10.1038/s41598-018-24653-z   DOI
7 Lin TK, Zhong L, Santiago JL. Association between stress and the HPA axis in the atopic dermatitis. Int J Mol Sci. 2017;18:2131.   DOI
8 Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3-45. https://doi.org/10.1210/er.2015-1080   DOI
9 Hayashi H, Arai C, Ikeuchi Y, Yamanaka M, Hirayama T. Effect of growth and parturition on hair cortisol in Holstein cattle. Anim Sci J. 2021;92:e13518. https://doi.org/10.1111/asj.13518   DOI
10 Weimer SL, Wideman RF, Scanes CG, Mauromoustakos A, Christensen KD, VizzierThaxton Y. An evaluation of methods for measuring stress in broiler chickens. Poult Sci. 2018;97:3381-9. https://doi.org/10.3382/ps/pey204   DOI
11 Erickson RL, Browne CA, Lucki I. Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav. 2017;178:166-71. https://doi.org/10.1016/j.physbeh.2017.01.018   DOI
12 Ataallahi M, Ghassemi Nejad J, Song JI, Kim JS, Park KH. Effects of feather processing methods on quantity of extracted corticosterone in broiler chickens. J Anim Sci Technol. 2020;62:884-92. https://doi.org/10.5187/jast.2020.62.6.884   DOI
13 Hosseindoust A, Oh SM, Ko HS, Jeon SM, Ha SH, Jang A, et al. Muscle antioxidant activity and meat quality are altered by supplementation of astaxanthin in broilers exposed to high temperature. Antioxidants. 2020;9:1032. https://doi.org/10.3390/antiox9111032   DOI
14 Lennartsson AK, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011;36:1530-9. https://doi.org/10.1016/j.psyneuen.2011.04.007   DOI
15 Gutierrez J, Gazzano A, Pirrone F, Sighieri C, Mariti C. Investigating the role of prolactin as a potential biomarker of stress in castrated male domestic dogs. Animals. 2019;9:676. https://doi.org/10.3390/ani9090676   DOI
16 Tothova C, Nagy O, Kovac G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: a review. Vet Med. 2014;59:163-80.   DOI
17 Garcia-Torres S, Cabeza de Vaca M, Tejerina D, Romero-Fernandez MP, Ortiz A, Franco D, et al. Assessment of stress by serum biomarkers in calves and their relationship to ultimate pH as an indicator of meat quality. Animals. 2021;11:2291. https://doi.org/10.3390/ani11082291   DOI
18 Gellrich K, Sigl T, Meyer HHD, Wiedemann S. Cortisol levels in skimmed milk during the first 22 weeks of lactation and response to short-term metabolic stress and lameness in dairy cows. J Anim Sci Biotechnol. 2015;6:31. https://doi.org/10.1186/s40104-015-0035-y   DOI
19 Kovacs L, Kezer FL, Bodo S, Ruff F, Palme R, Szenci O. Salivary cortisol as a non-invasive approach to assess stress in dystocic dairy calves. Sci Rep. 2021;11:6200. https://doi.org/10.1038/s41598-021-85666-9   DOI
20 Pompa G, Arioli F, Casati A, Fidani M, Bertocchi L, Dusi G. Investigation of the origin of prednisolone in cow urine. Steroids. 2011;76:104-10. https://doi.org/10.1016/j.steroids.2010.09.005   DOI
21 Ebinghaus A, Knierim U, Simantke C, Palme R, Ivemeyer S. Fecal cortisol metabolites in dairy cows: a cross-sectional exploration of associations with animal, stockperson, and farm characteristics. Animals. 2020;10:1787. https://doi.org/10.3390/ani10101787   DOI
22 Weaver SJ, Hynd PI, Ralph CR, Hocking Edwards JE, Burnard CL, Narayan E, et al. Chronic elevation of plasma cortisol causes differential expression of predominating glucocorticoid in plasma, saliva, fecal, and wool matrices in sheep. Domest Anim Endocrinol. 2021;74:106503. https://doi.org/10.1016/j.domaniend.2020.106503   DOI
23 Asano K, Takamatsu E, Numata H, Nitta M, Ishida M. Effect of climatic factors on urinary cortisol and peripheral blood leukocytes in lambs grazing on a semi-natural grassland in the Hokuriku district of Japan. Anim Sci J. 2021;92:e13536. https://doi.org/10.1111/asj.13536   DOI
24 Choi IH, Park C, Kwak SK, Chung TH. Analysis of plasma cortisol from nursery pigs in outdoor efficacy test for digital content - based approach in animal welfare convergence types. J Environ Sci Int. 2020;29;575-8. https://doi.org/10.5322/jesi.2020.29.5.575   DOI
25 Hughes HD, Carroll JA, Sanchez NC, Richeson JT. Natural variations in the stress and acute phase responses of cattle. Innate Immun. 2014;20:888-96. https://doi.org/10.1177/1753425913508993   DOI
26 Chen Y, Arsenault R, Napper S, Griebel P. Models and methods to investigate acute stress responses in cattle. Animals. 2015;5:1268-95. https://doi.org/10.3390/ani5040411   DOI
27 Fernandez-Novo A, Perez-Garnelo SS, Villagra A, Perez-Villalobos N, Astiz S. The effect of stress on reproduction and reproductive technologies in beef cattle-a review. Animals. 2020;10:2096. https://doi.org/10.3390/ani10112096   DOI
28 Trevisi E, Bertoni G. Some physiological and biochemical methods for acute and chronic stress evaluationin dairy cows. Ital J Anim Sci. 2009;8:265-86. https://doi.org/10.4081/ijas.2009.s1.265   DOI
29 Phillips R, Kraeuter AK, McDermott B, Lupien S, Sarnyai Z. Human nail cortisol as a retrospective biomarker of chronic stress: a systematic review. Psychoneuroendocrinology. 2021;123:104903. https://doi.org/10.1016/j.psyneuen.2020.104903   DOI
30 Mendoza SP, Capitanio JP, Mason WA. Chronic social stress: studies in non-human primates. In: Moberg GP, Mench JA, editors. The biology of animal stress: basic principles and implications for animal welfare. Wallingford: CABI;2000. p. 227-47.
31 Burnard C, Ralph C, Hynd P, Hocking Edwards J, Tilbrook A. Hair cortisol and its potential value as a physiological measure of stress response in human and non-human animals. Anim Prod Sci. 2016;57:401-14. https://doi.org/10.1071/AN15622   DOI
32 Romero LM. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol. 2004;19:249-55. https://doi.org/10.1016/j.tree.2004.03.008   DOI
33 Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16:300-17. https://doi.org/10.1159/000216188   DOI
34 Sauve B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30:E183-91. https://doi.org/10.25011/cim.v30i5.2894   DOI
35 Trumble SJ, Robinson EM, Berman-Kowalewski M, Potter CW, Usenko S. Blue whale earplug reveals lifetime contaminant exposure and hormone profiles. Proc Natl Acad Sci USA. 2013;110:16922-6. https://doi.org/10.1073/pnas.1311418110   DOI
36 Zannoni A, Pietra M, Gaspardo A, Accorsi PA, Barone M, Turroni S, et al. Non-invasive assessment of fecal stress biomarkers in hunting dogs during exercise and at rest. Front Vet Sci. 2020;7:126. https://doi.org/10.3389/fvets.2020.00126   DOI
37 Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol. 2006;147:255-61. https://doi.org/10.1016/j.ygcen.2006.01.005   DOI
38 Contreras ET, Vanderstichel R, Hovenga C, Lappin MR. Evaluation of hair and nail cortisol concentrations and associations with behavioral, physical, and environmental indicators of chronic stress in cats. J Vet Intern Med. 2021;35:2662-72. https://doi.org/10.1111/jvim.16283   DOI
39 Aerts J, Metz JR, Ampe B, Decostere A, Flik G, De Saeger S. Scales tell a story on the stress history of fish. PLOS ONE. 2015;10:e0123411. https://doi.org/10.1371/journal.pone.0123411   DOI
40 Bortolotti GR, Marchant TA, Blas J, German T. Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct Ecol. 2008;22:494-500. https://doi.org/10.1111/j.1365-2435.2008.01387.x   DOI
41 Meyer J, Novak M, Hamel A, Rosenberg K. Extraction and analysis of cortisol from human and monkey hair. J Vis Exp. 2014;83:e50882. https://doi.org/10.3791/50882   DOI
42 Allwin B, Jayathangaraj MG, Palanivelrajan M, Raman M. Evaluation of endogenous faecal cortisol as a non invasive assessment of stress in free ranging wild pigs (Sus scrofa). Indian J Vet Anim Sci Res. 2015;44:89-92.
43 Bahnsen I, Riddersholm KV, de Knegt LV, Bruun TS, Amdi C. The effect of different feeding systems on salivary cortisol levels during gestation in sows on herd level. Animals. 2021;11:1074. https://doi.org/10.3390/ani11041074   DOI
44 Kim B, Kim HR, Kim KH, Ji SY, Kim M, Lee Y, et al. Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling. J Anim Sci Technol. 2021;63:319. https://doi.org/10.5187/jast.2021.e23   DOI
45 Mohan NH, Nath A, Thomas R, Kumar S, Banik S, Das AK, et al. Relationship between plasma, saliva, urinary and faecal cortisol levels in pigs. Indian J Anim Sci. 2020;90:768-72.   DOI
46 Mohamed NA, Saad MF, Shukry M, El-Keredy AMS, Nasif O, Van Doan H, et al. Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress. Aquac Rep. 2021;19:100567. https://doi.org/10.1016/j.aqrep.2020.100567   DOI
47 Hudson JM, Anderson WG, Marcoux M. Measurement of cortisol in blow samples collected from free-swimming beluga whales (Delphinapterus leucas). Mar Mamm Sci. 2021;37:888-900. https://doi.org/10.1111/mms.12779   DOI
48 Ataallahi M, Nejad JG, Takahashi J, Song YH, Sung K, Yun J, et al. Effects of environmental changes during different seasons on hair cortisol concentration as a biomarker of chronic stress in Korean native cattle. Int J Agric Biol. 2019;21:1166-72. https://doi.org/10.17957/IJAB/15.1007   DOI
49 Comin A, Veronesi MC, Montillo M, Faustini M, Valentini S, Cairoli F, et al. Hair cortisol level as a retrospective marker of hypothalamic-pituitary-adrenal axis activity in horse foals. Vet J. 2012;194:131-2. https://doi.org/10.1016/j.tvjl.2012.04.006   DOI
50 Meyer JS, Novak MA. Minireview: Hair cortisol: a novel biomarker of hypothalamicpituitary-adrenocortical activity. Endocrinology. 2012;153:4120-7. https://doi.org/10.1210/en.2012-1226   DOI
51 Nedic S, Pantelic M, Vranjes-Duric S, Nedic D, Jovanovic L, Cebulj-Kadunc N, et al. Cortisol concentrations in hair, blood and milk of Holstein and Busha cattle. Slov Vet Res. 2017;54:163-72. https://doi.org/10.26873/SVR-398-2017   DOI
52 Heimburge S, Kanitz E, Otten W. The use of hair cortisol for the assessment of stress in animals. Gen Comp Endocrinol. 2019;270:10-7. https://doi.org/10.1016/j.ygcen.2018.09.016   DOI
53 Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012;37:589-601. https://doi.org/10.1016/j.psyneuen.2011.09.009   DOI
54 Dubey DK, Gnanasekar R. Heat stress in dairy animals: causes, consequences and possible solutions [Internet]. engormix 2008 [cited 2022 Mar 7]. https://en.engormix.com/dairycattle/articles/heat-stress-in-dairy-animals-t34200.htm
55 Trajchev M, Nakov D. Efficiency of installed cooling systems in dairy barns during hot season. J Agric Food Environ Sci. 2017;71:38-45.
56 Herbut P, Angrecka S, Walczak J. Environmental parameters to assessing of heat stress in dairy cattle-a review. Int J Biometeorol. 2018;62:2089-97. https://doi.org/10.1007/s00484-018-1629-9   DOI
57 Ataallahi M, Park GW, Kim JC, Park KH. Evaluation of substitution of meteorological data from the Korea meteorological administration for data from a cattle farm in calculation of temperature-humidity index. J Clim Change Res. 2020;11:669-78. https://doi.org/10.15531/KSCCR.2020.11.6.669   DOI
58 Koren L, Mokady O, Karaskov T, Klein J, Koren G, Geffen E. A novel method using hair for determining hormonal levels in wildlife. Anim Behav. 2002;63:403-6. https://doi.org/10.1006/anbe.2001.1907   DOI
59 Meyer JS, Novak MA. Assessment of prenatal stress-related cortisol exposure: focus on cortisol accumulation in hair and nails. Dev Psychobiol. 2021;63:409-36. https://doi.org/10.1002/dev.22021   DOI
60 Cirimele V, Kintz P, Dumestre V, Goulle JP, Ludes B. Identification of ten corticosteroids in human hair by liquid chromatography-ionspray mass spectrometry. Forensic Sci Int. 2000;107:381-8. https://doi.org/10.1016/S0379-0738(99)00180-2   DOI
61 Evans MR, Roberts ML, Buchanan KL, Goldsmith AR. Heritability of corticosterone response and changes in life history traits during selection in the zebra finch. J Evol Biol. 2006;19:343-52. https://doi.org/10.1111/j.1420-9101.2005.01034.x   DOI
62 Azevedo A, Bailey L, Bandeira V, Dehnhard M, Fonseca C, de Sousa L, et al. Age, sex and storage time influence hair cortisol levels in a wild mammal population. PLOS ONE. 2019;14:e0221124. https://doi.org/10.1371/journal.pone.0221124   DOI
63 Fourie NH, Brown JL, Jolly CJ, Phillips-Conroy JE, Rogers J, Bernstein RM. Sources of variation in hair cortisol in wild and captive non-human primates. Zoology. 2016;119:119-25. https://doi.org/10.1016/j.zool.2016.01.001   DOI
64 Lutz CK, Meyer JS, Novak MA. Hair cortisol in captive corral-housed baboons. Gen Comp Endocrinol. 2021;302:113692. https://doi.org/10.1016/j.ygcen.2020.113692   DOI
65 Braun U, Michel N, Baumgartner MR, Hassig M, Binz TM. Cortisol concentration of regrown hair and hair from a previously unshorn area in dairy cows. Res Vet Sci. 2017;114:412-5. https://doi.org/10.1016/j.rvsc.2017.07.005   DOI
66 Ewert A, Chang Y. Levels of nature and stress response. Behav Sci. 2018;8:49. https://doi.org/10.3390/bs8050049   DOI
67 Hirsch MS, Watkins J. A comprehensive review of biomarker use in the gynecologic tract including differential diagnoses and diagnostic pitfalls. Adv Anat Pathol. 2020;27:164-92. https://doi.org/10.1097/PAP.0000000000000238   DOI
68 Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, et al. Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 2019;6:91. https://doi.org/10.3389/fmolb.2019.00091   DOI
69 Moberg GP. Biological response to stress: implications for animal welfare. In: Moberg GP, Mench JA, editors. The biology of animal stress: basic principles and implications for animal welfare. Wallingford, Oxon: CABI; 2000. p. 1-21.
70 Takahashi A, Flanigan ME, McEwen BS, Russo SJ. Aggression, social stress, and the immune system in humans and animal models. Front Behav Neurosci. 2018;12:56. https://doi.org/10.3389/fnbeh.2018.00056   DOI
71 Ghassemi Nejad J, Park KH, Forghani F, Lee HG, Lee JS, Sung KI. Measuring hair and blood cortisol in sheep and dairy cattle using RIA and ELISA assay: a comparison. Biol Rhythm Res. 2020;51:887-97. https://doi.org/10.1080/09291016.2019.1611335   DOI
72 Ghassemi Nejad J, Lohakare JD, Son JK, Kwon EG, West JW, Sung KI. Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal. 2014;8:128-32. https://doi.org/10.1017/S1751731113001870   DOI
73 Oh S, Hosseindoust A, Ha S, Moturi J, Mun J, Tajudeen H, et al. Dietary fiber for gestating sows during heat stress: effects on reproductive performance and stress level. 2021. https://doi.org/10.21203/rs.3.rs-952458/v1   DOI
74 Weirup L, Schulz C, Seibel H, Aerts J. Scale cortisol is positively correlated to fin injuries in rainbow trout (Oncorhynchus mykiss) reared in commercial flow through systems. Aquaculture. 2021;543:736924. https://doi.org/10.1016/j.aquaculture.2021.736924   DOI
75 Mormede P, Andanson S, Auperin B, Beerda B, Guemene D, Malmkvist J, et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav. 2007;92:317-39. https://doi.org/10.1016/j.physbeh.2006.12.003   DOI
76 Yu DG, Namgung N, Kim JH, Won SY, Choi WJ, Kil DY. Effects of stocking density and dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators in broiler chickens. J Anim Sci Technol. 202;63:815. https://doi.org/10.5187/jast.2021.e77   DOI
77 Thaxton JP, Stayer P, Ewing M, Rice J. Corticosterone in commercial broilers. J Appl Poult Res. 2005;14: 745-9. https://doi.org/10.1093/japr/14.4.745   DOI
78 Nohara M, Tohei A, Sato T, Amao H. Evaluation of response to restraint stress by salivary corticosterone levels in adult male mice. J Vet Med Sci. 2016;78:775-80. https://doi.org/10.1292/jvms.15-0610   DOI
79 West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003;86:2131-44. https://doi.org/10.3168/jds.S0022-0302(03)73803-X   DOI
80 Park GW, Ataallahi M, Ham SY, Oh SJ, Kim KY, Park KH. Estimating losses in milk production by heat stress and environmental impacts of greenhouse gas emissions in Korean dairy farms. J Anim Sci Technol. 2021. https://doi.org/10.5187/jast.2021.e134   DOI
81 Smyth N. Cortisol secretion in saliva and hair: methodological considerations and relationships with state and trait well-being [Ph.D. dissertation]. London, UK: University of Westminster; 2013.
82 French D. Advances in bioanalytical techniques to measure steroid hormones in serum. Bioanalysis. 2016;8:1203-19. https://doi.org/10.4155/bio-2015-0025   DOI
83 Palme R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim Welf. 2012;21:331-7. https://doi.org/10.7120/09627286.21.3.331   DOI
84 Inder WJ, Dimeski G, Russell A. Measurement of salivary cortisol in 2012 - laboratory techniques and clinical indications. Clin Endocrinol. 2012;77:645-51. https://doi.org/10.1111/j.1365-2265.2012.04508.x   DOI
85 Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia. 2011;166:869-87. https://doi.org/10.1007/s00442-011-1943-y   DOI
86 Fukasawa M, Tsukada H, Kosako T, Yamada A. Effect of lactation stage, season and parity on milk cortisol concentration in Holstein cows. Livest Sci. 2008;113:280-4. https://doi.org/10.1016/j.livsci.2007.05.020   DOI
87 Gormally BMG, Romero LM. What are you actually measuring? A review of techniques that integrate the stress response on distinct time-scales. Funct Ecol. 2020;34:2030-44. https://doi.org/10.1111/1365-2435.13648   DOI
88 Won S, Yoon Y, Hamid MMA, Reza A, Shim S, Kim S, et al. Estimation of greenhouse gas emission from Hanwoo (Korean native cattle) manure management systems. Atmosphere. 2020;11:845. https://doi.org/10.3390/atmos11080845   DOI
89 Baier F, Grandin T, Engle T, Edwards-Callaway L. Evaluation of hair characteristics and animal age on the impact of hair cortisol concentration in feedlot steers. Front Vet Sci. 2019;6:323. https://doi.org/10.3389/fvets.2019.00323   DOI
90 Bortolotti GR, Marchant T, Blas J, Cabezas S. Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol. 2009;212:1477-82. https://doi.org/10.1242/jeb.022152   DOI
91 Kretzschmar-McCluskey V, Fisher C, Van Tuijl O. Ross Technical Notes - a practical guide to managing feather cover in broiler breeder females [Internet]. Aviagen. 2014 [cited 2022 Mar 7]. http://en.aviagen.com/assets/Tech_Center/Ross_Tech_Articles/RossTechNoteFeathering2014-EN.pdf
92 Freeman NE, Newman AEM. Quantifying corticosterone in feathers: validations for an emerging technique. Conserv Physiol. 2018;6:coy051. https://doi.org/10.1093/conphys/coy051   DOI
93 Jenni-Eiermann S, Helfenstein F, Vallat A, Glauser G, Jenni L. Corticosterone: effects on feather quality and deposition into feathers. Methods Ecol Evol. 2015;6:237-46. https://doi.org/10.1111/2041-210X.12314   DOI
94 Carbajal A, Tallo-Parra O, Sabes-Alsina M, Mular I, Lopez-Bejar M. Feather corticosterone evaluated by ELISA in broilers: a potential tool to evaluate broiler welfare. Poult Sci. 2014;93:2884-6. https://doi.org/10.3382/ps.2014-04092   DOI
95 Lattin CR, Reed JM, DesRochers DW, Romero LM. Elevated corticosterone in feathers correlates with corticosterone-induced decreased feather quality: a validation study. J Avian Biol. 2011;42:247-52. https://doi.org/10.1111/j.1600-048X.2010.05310.x   DOI
96 Fernandez-Peralbo MA, Luque de Castro MD. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. TrAC Trends Analyt Chem. 2012;41:75-85. https://doi.org/10.1016/j.trac.2012.08.011   DOI
97 Genther DJ, Laudenslager ML, Sung Y, Blake CR, Chen DS, Lin FR. Assessing systemic stress in otolaryngology: methodology and feasibility of hair and salivary cortisol testing. J Nat Sci. 2015;1:e152.
98 Thau L, Gandhi J, Sharma S. Physiology, cortisol [Internet]. StatPearls; 2021 [cited 2022 Mar 7]. https://www.ncbi.nlm.nih.gov/books/NBK538239/
99 Hansen SH. Biological samples: their composition and properties, and their collection and storage. In: Honore Hansen S, Pedersen-Bjergaard S, editors. Bioanalysis of pharmaceuticals: sample preparation, separation techniques, and mass spectrometry. Hoboken, NJ: John Wiley & Sons; 2015 p.23-30.
100 Niu Z, Zhang W, Yu C, Zhang J, Wen Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends Analyt Chem. 2018;102:123-46. https://doi.org/10.1016/j.trac.2018.02.005   DOI
101 Herane-Vives A, Ortega L, Sandoval R, Young AH, Cleare A, Espinoza S, et al. Measuring Earwax Cortisol Concentration using a non-stressful sampling method. Heliyon. 2020;6:e05124. https://doi.org/10.1016/j.heliyon.2020.e05124   DOI
102 Palme R. Measuring fecal steroids: guidelines for practical application. Ann N Y Acad Sci. 2005;1046:75-80. https://doi.org/10.1196/annals.1343.007   DOI
103 Shokry E, Pereira J, Marques Junior JG, da Cunha PHJ, Noronha Filho ADF, da Silva JA, et al. Earwax metabolomics: an innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period. PLOS ONE. 2017;12:e0183538. https://doi.org/10.1371/journal.pone.0183538   DOI
104 Carbajal Brossa A. Cortisol in skin mucus and scales as a measure of fish stress and habitat quality [Ph.D. dissertation]. Barcelona, Barcelona: Universitat Autonoma de Barcelona; 2018.
105 Fischer S, Schumacher S, Skoluda N, Strahler J. Fingernail cortisol-state of research and future directions. Front Neuroendocrinol. 2020;58:100855. https://doi.org/10.1016/j.yfrne.2020.100855   DOI
106 Binz TM, Gaehler F, Voegel CD, Hofmann M, Baumgartner MR, Kraemer T. Systematic investigations of endogenous cortisol and cortisone in nails by LC-MS/MS and correlation to hair. Anal Bioanal Chem. 2018;410:4895-903. https://doi.org/10.1007/s00216-018-1131-6   DOI
107 Higashi T, Yamagata K, Kato Y, Ogawa Y, Takano K, Nakaaze Y, et al. Methods for determination of fingernail steroids by LC/MS/MS and differences in their contents between right and left hands. Steroids. 2016;109:60-5. https://doi.org/10.1016/j.steroids.2016.02.013   DOI
108 Ghassemi Nejad J, Ataallahi M, Park KH. Methodological validation of measuring Hanwoo hair cortisol concentration using bead beater and surgical scissors. J Anim Sci Technol. 2019;61:41-6. https://doi.org/10.5187/jast.2019.61.1.41   DOI
109 Mallick S, Kumar BS, Prakash BS, Aggrawal A, Pandita S. Development and validation of a simple, sensitive enzyme immunoassay for quantification of androstenedione in bull plasma. J Anim Sci Technol. 2015;57:1-5.
110 Elshal MF, McCoy JP. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods. 2006;38:317-23. https://doi.org/10.1016/j.ymeth.2005.11.010   DOI
111 Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci. 2008;63:879-84. https://doi.org/10.1093/gerona/63.8.879   DOI