• Title/Summary/Keyword: biological value

Search Result 2,175, Processing Time 0.032 seconds

Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli (시가 독소 생성 대장균의 제어를 위한 박테리오파지의 분리와 특성 분석)

  • Lim, Ga-Yeon;Park, Do Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.594-600
    • /
    • 2018
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacterium. To control STEC, the characteristics of the ECP33 and NOECP91 coliphages, which belong to the Myoviridae family, were analyzed. The host inhibition range for a total of 44 STEC strains was 45.5% for ECP33 and 65.9% for NOECP91. ECP33 and NOECP91 were relatively stable at $65^{\circ}C$, 50 ppm of sodium hyperchlorite, and a pH value of 4-10. However, the two phages were susceptible to a temperature of $70^{\circ}C$. NOECP91 was killed within 1 h after exposure to 30% ethanol, but ECP33 showed high tolerance even after exposure to 70% ethanol for 1 h. Interestingly, the inhibition of STEC growth according to the multiplicity of infection of 0.1 was confirmed until no growth was observed after 10 hours of culture with the phages. Therefore, the ECP33 and NOECP91 phages may be applied as a biological control agent for Shiga toxin-producing E. coli.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

Assessment of Damage for the Three­Storied Stone Pagoda of Bulguksa Temple in Gyeongju (경주 불국사 삼층석탑(석가탑)의 손상도 평가)

  • Lee, Gemma
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.299-305
    • /
    • 2019
  • As the damage factors of the three­storey stone pagoda of the Bulguksa Temple in Gyeongju could cause a reduction in the historical and artistic value and accelerate the deterioration of the stone, an appropriate solution is needed. The aim of stone conservation is to conserve the original shape and convey originality from the ancestors to their descendants. This procedure includes a record of the condition, being available in the future. In particular, the damage assessment could be used in conservational research, educational data, conservational treatment, and preventive data. As a result of quantitative damage assessment, biological damage indicated 159 %, chemical damage 114 %, and physical damage 16 %. The west direction revealed 95 % because of the amount of sunshine, moisture, and expansion of rock. Complex factors and high range damage were observed on the foundation and body of the pagoda. Since the top of pagoda was restored in the 1970s, the state presented a good condition. By doing this, the number of organisms could be reduced by cleaning and the physical damage could be minimized by bonding. On the other hand, continuous monitoring will be needed because there is a possibility of reforming the damage in the future.

Evaluation of biological activity for Dangyuja (Citrus grandis) leaves and investigation of optimal concentrations extracted by alternative ethanol concentrations (에탄올 농도별 당유자 잎의 최적추출조건 및 생리활성 평가)

  • Nakamura, Masaya;Ra, Jong-Hwan;Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • TheCitrus grandis Osbeck is a special product in the Jeju island. The product has been as a remedy for liver damage and hang over. This study demonstrates how to investigate and compare the antioxidant, phenol content, tyrosinase and ${\alpha}$-glucosidase inhibitory activity, antimicrobial, and alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity with the C. grandis leaves extracted in different ethanol concentrations. From the yield, a 20% ethanol extract demonstrated the highest results among the other extracts. The distilled water extract showed the most abundant in a total phenol content and highest ABTS radical scavenging activity and reducing power assay. In the DPPH radical scavenging activity, ${\alpha}$-glucosidase and tyrosinase inhibitory assay (used ${\text\tiny{L}}$-tyrosine as substrate), the 80% ethanol extract exhibited a higher value than other extracts. The 60% ethanol extract showed prominent activities in the tyrosinase inhibitory (used ${\text\tiny{L}}$-dopa as substrate), ADH and ALDH activity assay. In the minimum inhibitory concentration (MIC) assay, 60% and 80% ethanol extracts inhibited the bacterial growth almost similarly. Moreover, the gram-positive bacteria was more restrained than the gram-negative bacteria. The resultsrevealed that the distilled water and 80% ethanol extract showed a relatively higher antioxidant activity compared to other extracts. The 60 ~ 80% ethanol extracts demonstrated potential tyrosinase, ${\alpha}$-glucosidase inhibitory, antimicrobial, ADH and ALDH activities. Therefore, the C. grandis is suggested to be considered as a functional material for various proposes.

Physico-chemical Properties and Antibacterial Activities of Lactonic Sophorolipid (락톤형 소포로리피드의 물리화학적 특성 및 항균효과)

  • Cho, Soo A;Eom, Gyeong Tae;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.303-307
    • /
    • 2019
  • Sophorolipid is a biological surfactant of the glycolipid structure produced by Candida bombicola, which generally exists as a mixture of acidic and lactonic forms. In this study, we investigated physico-chemical properties, antibacterial activities, and cytotoxicity of the sophorolipid containing more than 96% of the lactonic form, produced by the gene regulation of production strains and application of a metabolic engineering technique. The lactonic sophorolipid showed a weak acidity in the range of pH 3.2~4.6 when diluted in water at the concentrations from 1 to 0.001 wt%. The $pK_a$ value of the lactonic sophorolipid was estimated to be around 4.3 from the acid-base titration curve. The critical micelle concentration (CMC) of the lactonic sophorolipid was $10^{-2}wt%$, at which the surface tension of aqueous solution was reduced to 36 mN/m. The lactonic sophorolipid showed the minimum inhibitory concentrations (MIC) of $1{\times}10^{-3}$ and $5{\times}10^{-3}g/mL$ against Propionibacterium acnes and Corynebacterium xerosis, respectively. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay showed that cytotoxicity of the lactonic sophorolipid was ten times lower than that of triclosan.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.

Applicability of the Wind Erosion Prediction System for prediction of soil loss by wind in arable land

  • Lee, Kyo-Suk;Seo, Il-Hwan;Lee, Sang-Phil;Lim, Chul-Soon;Lee, Dong-Sung;Min, Se-Won;Jung, Hyun-Gyu;Yang, Jae-Eui;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.845-857
    • /
    • 2020
  • The precise estimation of accelerated soil wind erosion that can cause severe economic and environmental impacts still has not been achieved to date. The objectives of this investigation were to verify the applicability of a Wind Erosion Prediction System (WEPS) that expressed the soil loss as mass per area for specific areas of interest on a daily basis for a single event in arable lands. To this end, we selected and evaluated the results published by Hagen in 2004 and the soil depth converted from the mass of soil losses obtained by using the WEPS. Hagen's results obtained from the WEPS model followed the 1 : 1 line between predicted and measured value for soil losses with only less than 2 kg·m-2 whereas the values between the measured and predicted loss did not show any correlation for the given field conditions due to the initial field surface condition although the model provided reasonable estimates of soil loss. Calculated soil depths of the soil loss by wind for both the observed and predicted ones ranged from 0.004 to 3.113 cm·10 a-1 and from 0 to 2.013 cm·10 a-1, respectively. Comparison of the soil depths between the observed and predicted ones did not show any good relationship, and there was no soil loss in the predicted one while slight soil loss was measured in the observed one. Therefore, varying the essential model inputs and factors related to wind speed and soil properties are needed to accurately estimate soil loss for a given field in arable land.

Development and Verification of a Simultaneous Analytical Method for Whole Blood Metals and Metalloids for Biomonitoring Programs (바이오모니터링 프로그램을 위한 혈중 금속류 동시분석법 개발 및 확인 평가)

  • Cha, Sangwon;Oh, Eunha;Oh, Selim;Han, Sang Beom;Im, Hosub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.64-77
    • /
    • 2021
  • Objective: Biological monitoring of trace elements in human blood samples has become an important indicator of the health environment. The purpose of this study was to detect and evaluate multiple metal items in blood samples based on ICP-MS, to perform comparative evaluation with the existing analysis method, and to develop and verify a new method. Methods: 100 μL of whole blood from 80 healthy subjects was used to analyze ten metals (Sb, tAs, Cd, Pb, Mn, Hg, Mo, Ni, Se, Tl) using ICP-MS. Verification of the analysis method included calculation of linearity, accuracy, precision and detection limits. In addition, a comparative test with the conventional graphite furnace atomic absorption spectroscopy (GF-AAS) method was performed. In the case of Pb, Cd, and Hg in whole blood, cross-analysis between Pb, Cd, and Hg analysis methods was performed to confirm the difference between the existing method and the new method (ICP-MS). Results: The coefficient of determination (R2) was 0.999 or higher in seven items and 0.995 or higher in three items. The Pb result showed that Pearson's correlation coefficient was very high at 0.983, and the intraclass correlation coefficient was 0.966. The Cd result showed that Pearson's correlation coefficient was 0.917 between the existing method and the new analysis concentration value. Its intraclass correlation coefficient was 0.960, and there was no significant difference between the two groups. Hg had a low correlation at 0.687, and the intraclass correlation coefficient was 0.761, which was lower than that of Pb and Cd. The intra-day and inter-day accuracy of Pd and Cd were satisfactory, but Hg did not meet the criteria for both accuracy and precision when compared with the conventional analysis method. Conclusion: This study can be meaningful in that it proposes a more efficient and feasible analysis method by verifying a blood heavy metal concentration experiment using multiple simultaneous analyses. All samples were processed and analyzed using the new ICP-MS. It was confirmed that the agreement between the two methods was very high, with the agreement between the current and new methods being 0.769 to 0.998. This study proposes an efficient simultaneous methodology capable of analyzing multiple elements with small samples. In the future, studies of various applications and the reliability of ICP-MS analysis methods are required, and research on the verification of accurate, precise, and continuous analysis methods is required.

Sawdust Substitution in Growth Medium of Oyster Mushroom for Using Its By-product Spent Mushroom Substrates as Ruminant Feed (수확 후 배지의 가축 사료화를 위한 느타리 생육배지 톱밥 대체재료 선발 연구)

  • Kim, Jeong-Han;Jang, Myoung-Jun
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.407-414
    • /
    • 2020
  • To replace the sawdust in the growth medium of oyster mushroom to utilize its by-product spent mushroom substrates (SMS) as feed for ruminant, we performed cultivation test using cotton seed hull pellet (CSHP), corn stalk pellet (CSP), corncob (CC), and analyzed the feed chemical properties of those SMS. As a result of cultivation test, CC and CSHP treatment took 27 days for spawn run, 4 days for primordium formation, and 3 days for development fruiting bodies, resulting in a total cultivation period of 34 days. The yield per bottle was 134 g for CC treatment, similar to 130 g for control, while CSHP treatment (112 g) and CSP treatment (68 g) were lower than that of control. The highest biological efficiency (BE) was shown in CC treatment as 80.1%, which was 11.4% higher than 68.7% of control. The SMS of CC treatment had a relatively low content of neutral detergent fiber and acid detergent fiber, and in particular, lignin content was the lowest and crude protein content was the highest among other treatments. Therefore, CC as a substitute material for sawdust was capable of stable mushroom production and excellent nutritional value as a feed for its by-products.

Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone (마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거)

  • Lee, Inkyu;Lee, Eunyoung;Lee, Hyejung;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.617-622
    • /
    • 2011
  • Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.