Browse > Article
http://dx.doi.org/10.14478/ace.2019.1023

Physico-chemical Properties and Antibacterial Activities of Lactonic Sophorolipid  

Cho, Soo A (Division of chemistry and cosmetics, Dongduk Women's University)
Eom, Gyeong Tae (Korea Research Center for Industrial Chemical Biotechnology, KRICT)
Jin, Byung Suk (Division of chemistry and cosmetics, Dongduk Women's University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 303-307 More about this Journal
Abstract
Sophorolipid is a biological surfactant of the glycolipid structure produced by Candida bombicola, which generally exists as a mixture of acidic and lactonic forms. In this study, we investigated physico-chemical properties, antibacterial activities, and cytotoxicity of the sophorolipid containing more than 96% of the lactonic form, produced by the gene regulation of production strains and application of a metabolic engineering technique. The lactonic sophorolipid showed a weak acidity in the range of pH 3.2~4.6 when diluted in water at the concentrations from 1 to 0.001 wt%. The $pK_a$ value of the lactonic sophorolipid was estimated to be around 4.3 from the acid-base titration curve. The critical micelle concentration (CMC) of the lactonic sophorolipid was $10^{-2}wt%$, at which the surface tension of aqueous solution was reduced to 36 mN/m. The lactonic sophorolipid showed the minimum inhibitory concentrations (MIC) of $1{\times}10^{-3}$ and $5{\times}10^{-3}g/mL$ against Propionibacterium acnes and Corynebacterium xerosis, respectively. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay showed that cytotoxicity of the lactonic sophorolipid was ten times lower than that of triclosan.
Keywords
Lactonic sophorolipid; Physico-chemical properties; P. acne; C. xerosis; Cytotoxicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. A. J. Gorin, J. F. T. Spencer, and A. P. Tulloch, Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem., 39, 846-855 (1961).   DOI
2 I. N. A. Van Bogaert, J. Zhang, and W. Soetaert, Microbial synthesis of sophorolipids, Process Biochem., 46, 821-833 (2011).   DOI
3 Y. Hirata, M. Ryu, Y. Oda, K. Igarashi, A. Nagatsuka, T. Furuta, and M. Sugiura, Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J. Biosci. Bioeng., 108(2), 142-146 (2009).   DOI
4 R. Marchal, J. Lemal, C. Sulzer, and A. M. Davila, Production of sophorolipid acetate acids from oils or esters, US Patent 5,900,366 (1999).
5 E. J. Gudina, V. Rangarajan, R. Sen, and L. R. Rodrigues, Potential therapeutic applications of biosurfactants, Trends Pharmacol. Sci.. 34(12), 667-675 (2013).   DOI
6 M. R. de Oliveira, A. Magri, C. Baldo, D. Camilios-Neto, T. Minucelli, and M. A. P. C. Celligoi, Sophorolipids A promising biosurfactant and it's applications, Int. J. Adv. Biotechnol. Res., 6(2), 161-174 (2015).
7 D. Develter, M. Renkin, and I. Jacobs, Detergent compositions, Eur. Patent 01445302 (2006).
8 T. Furuta, K. Igarashi, and Y. Hirata, Low-forming detergent compositions, World Patent 03/002700 (2003).
9 H. Y. Sohn, Y. S. Kim, E. J. Kim, Y. S. Kwon, and K. H. Son, Screening of anti-acne activity of natural products against Propionibacterium acnes, Korean J. Microbiol. Biotechnol., 34, 265-272 (2006).
10 M. H. Ha and S. H. Cho, Beauty effect of Prunus mume extract against Propionibacterium acnes, Asian J. Beauty Cosmetol., 2(3), 69-75 (2004).
11 S. M. Choi, M. J. Kim, Y. H. Choi, H. J. Ahn, and Y. P. Yun, Screening of the antibacterial activity of natural products aganist Propionibacterium acnes, Arch. Pharm. Res., 42(1), 89-94 (1998).
12 E. Mikamia, T. Goto, T. Ohno, H. Matsumoto, and M. Nishid, Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acid and salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography, J. Pharm. Biomed. Anal., 28(2), 261-267 (2002).   DOI
13 A. E. Aiell, E. L. Larson, and S. B. Levy, Consumer antibacterial soaps: Effective or just risky? Clin. Infect. Dis., 45, 137-147 (2007).   DOI
14 J. P. Zhang, Q. X. Chen, K. K. Song, and J. J. Xie, Inhibitory effects of salicylic acid family compounds on the diphenolase activity of mushroom tyrosinase, Food Chem., 95, 579-584 (2006).   DOI
15 D. E. Carey and P. J. McNamara, The impact of triclosan on the spread of antibiotic resistance in the environment, Front. Microbiol., 5, 1-11 (2015).   DOI
16 N. H. Kim, S. J. Mun, A. H. Kim, J. H. Min, J. H. Ahn, W. H. Ha, and B. I. Kim, The antimicrobial and anti-plaque effect of dentifrice containing baking soda and triclosan, J. Korean Acad. Oral Health, 35(1), 10-17 (2011).
17 M. Elshikh, I. Moya-Ramiirez, H. Moens, S. Roelants, W. Soetaert, R. Marchant, and I. M. Banat, Rhamnolipids and lactonic sophorolipids: Natural antimicrobial surfactants for oral hygiene, J. Appl. Microbiol., 123, 1111-1123 (2017).   DOI
18 Y. Hu and L. K. Ju, Purification of lactonic sophorolipids by crystallization, J. Biotechnol., 87, 263-272 (2001).   DOI
19 H. S. Kim, Y. B. Kim, B. S. Lee, and E. K. Kim, Sophorolipid production by Candida bombicola ATCC 22214 from a corn oil processing byproduct, J. Microbiol. Biotechnol., 15(1), 55-58 (2005).
20 W. G. Cho, H. S. Park, and B. J. Ahn, Antimicrobial activities of sophorolipids and its application for cosmetics, J. Soc. Cosmet. Sci. Korea, 34(4), 317-323 (2008).
21 B. Farhadieh, Determination of CMC and partial specific volume of polysorbates 20, 60, and 80 from densities of their aqueous solutions, J. Pharm. Sci., 62(10), 1685-1688 (1973).   DOI