Fig. 1. Valence-Arousal plane. 그림 1. Valence-Arousal 면
Fig. 2. Deep learning Model Block diagram. 그림 2. 딥러닝 모델 블록 다이어그램
Table 1. Comparison of emotion recognition rate according to data reliability evaluation technique. 표 1. 데이터 신뢰성 평가 기법에 따른 감정인식률 비교
Table 2. Valence-Arousal Comparison of Emotion Recognition Rate by Weights Applying. 표 2. Valence-Arousal 가중치 적용 여부에 따른 감정식률 비교
Table 3. Comparison of Emotion Recognition Rate with and without All of the Proposed Methods. 표 3. 제안한 방법을 모두 적용한 경우와 그렇지 않은 경우의 감정인식률 비교
References
- M. Soleymani, J. Lichtenauer, T. Pun, M. Pantic, "A multi-modal database for affect recognition and implicit tagging," IEEE Trans. Affect. Comput. Vol.3 pp.42-55, 2012. DOI:10.1109/T-AFFC.2011.25
- G. Fanelli, J. Gall, H. Romsdorfer, T. Weise, L. Van Gool, "A 3-D audio-visual cor-pus of affective communication," IEEE Trans. on Multimedia Vol. 12 pp.591-598. 2010. DOI:10.1109/TMM.2010.2052239
- Z. Yin, J. Zhang, "Operator functional state classification using least-square sup-port vector machine based recursive feature elimination technique," Comput. Methods Prog. Biomed. Vol. 113, pp.101-115. 2014. DOI:10.1016/j.cmpb.2013.09.007
- J. Kim, E. Andre, "Emotion-specific dichotomous classification and feature-level fusion of multichannel biosignals for automatic emotion recognition," in: Pro-ceedings of IEEE Inter-national Conference on Multisensor Fusion and Integration for Intelligent Systems 2008. DOI:10.1109/MFI.2008.4648119
- H. Lee, A. Shackman, D. Jackson, R. Davidson, "Test-retest reliability of voluntary emotion regulation," Psychophysiology Vol.46 pp.874-879. 2009. DOI:10.1111/j.1469-8986.2009.00830.x
- O. AlZoubi, S. K. D'Mello, R. A. Calvo, "Detecting naturalistic expressions of non-basic affect using physiological signals," IEEE Trans. Affect. Comput. Vol.3 pp.298-310. 2012. DOI:10.1109/T-AFFC.2012.4
- L. Brown, B. Grundlehner, J. Penders, "Towards wireless emotional valence de-tection from EEG," in: Proceedings of Engineering in Medicine and Biology Society, EMBC, 2011. DOI:10.1109/IEMBS.2011.6090412
- R. J. Davidson, "Affective neuroscience and psychophysiology: toward a synthesis," Psychophysiology Vol.40, pp.655-665, 2003. DOI:10.1111/1469-8986.00067
- Z. Yin, J. Zhang, "Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vec tor-machine-based clustering and classification technique," Comput. Methods Prog. Biomed. Vol.115, pp.119-134. 2014. DOI:10.1016/j.cmpb.2014.04.011
- G. K. Verma, U. S. Tiwary, "Multimodal fusion framework: a multiresolution ap-proach for emotion classification and recognition from physiological signal," NeuroImage Vol.102 pp.162-172. 2014. DOI:10.1016/j.neuroimage.2013.11.007
- M. Khezri, M. Firoozabadi, A. R. Sharafat, "Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals," Comput. Methods Prog. Biomed. Vol.122 pp.149-164. 2015. DOI:10.1016/j.cmpb.2015.07.006
- C. Li, C. Xu, Z. Feng, "Analysis of physiological for emotion recognition with the IRS model," Neurocomputing Vol.178 pp.103-111, 2016. DOI:10.1016/j.neucom.2015.07.112
- Senthil, R. Arumuganathan, K. Sivakumar, and C. Vimal, "Removal of ocular artifacts in the EEG through wavelet transform without using an EOG reference channel," Int.J. Open Problems Compt. Math., Vol.1, No.3, 2008. DOI:10.1.1.502.6932
- Mrs V Baby Deepa, Dr P Thangaraj, Dr S Chitra, "Investigating the performance improvement by sampling techniques in EEG data," International Journal on Computer Science and Engineering, Vol.2, pp.2025-2028, 2010.
- J. Hernandez et al. "Call center stress recognition with person-specific models," Proceedings of the Affective Computing and Intelligent Interaction, Memphis, 2011. DOI:10.1007/978-3-642-24600-5_16
- M. Poh et al. "A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity," IEEE Trans. Biomed. Eng, 2010. DOI:10.1109/TBME.2009.2038487
- M. Poh et al. "Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor," Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010. DOI:10.1109/IEMBS.2010.5625988
- R. R. Coifman and D. L. "Donoho. in Wavelets and statistics," Vol.103, pp.281-299, 1995.
- D. P. Subha, P. K. Joseph, R. Acharya, C. M. Lim, "EEG Signal Analysis: A Survey," Journal of Medical Systems, Vol.34, No.2, pp 195-212, 2010. DOI:10.1007/s10916-008-9231-z
- Chmelka and J. Kozumplik, "Wavelet-based Wiener Filter for electrocardiogram signal denoising," Comput. Cardiol, vol.32, pp.771-774, 2005. DOI:10.1109/CIC.2005.1588218
- Maarten Jansen, "wavelet Thresholding and Noise Reductionm," Katholieke Universiteit Leuven-Faculteit Toegepaste Wetenschappen Arenbergkasteel, 2000.
- R. Subramanian et al., "ASCERTAIN: Emotion and Personality Recognition using Commercial Sensors," IEEE Transactions on Affective Computing, pp.1-14, 2016.
- P. Baldi, "Boolean AutoEncoder," pp.37-50, 2012.
- R. Memisevic and C. Zach, "Gated softmax classification," Advances in Neural, pp.1-9, 2010.