• Title/Summary/Keyword: biological signal

Search Result 1,267, Processing Time 0.025 seconds

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

Inhibitory Effect of Shiitake Mushroom Extracts Cultured in Aloe-Supplement on Invasion/Migration of TNF-α-Induced MDA-MB-231 Breast Cancer Cells (알로에 배지에서 재배한 표고버섯 추출물의 종양괴사인자로 유도된 유방암세포 MDA-MB231에 대한 전이 저해 활성)

  • Suh, Seok-Jong;Kim, Cheorl-Ho;Baek, Jin-Hong;Lee, Kyoung-Hae;Shin, Dong-Bum;Park, Sung-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • To investigate the anti-cancer effect of shiitake mushrooms (Lentinus edodes) cultured in aloe-supplement, we treated extract of shiitake mushroom cultured in aloe-supplement (ESA) to MDA-MB-231 human breast cancer cells. ESA-treated MDA-MB-231 cells showed decreased growth rate in XTT assay. In addition migration/invasion was noticeably inhibited by ESA in TNF-${\alpha}$-treated MDA-MB-231 cells. Western blot analysis showed that the molecular mechanism of cell migration/invasion was mediated by reduced intercellular adhesion molecule-1 expression via p-ERK signal transduction pathways. We found ESA had inhibition activity against cellular growth and migration/invasion. Taken together, ESA has putative anti-cancer activity against human breast cancer.

Cytogenetic Study of Maackia amurensis Rupr. & Maxim. and M. fauriei (Levl.) Takeda Using Karyotyping Analysis and the FISH Technique (핵형분석과 FISH 기술을 이용한 솔비나무와 다릅나무의 세포유전학적 연구)

  • Kim, Soo-Young;Kim, Chan-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.193-198
    • /
    • 2009
  • Chromosome analysis using karyotyping and bicolor FISH were carried out for two Maackia species (M. fauriei and M. amurensis) found in Korea. The somatic metaphase chromosome number was 2n = 2x = 18 in both, and the size of these chromosomes ranged from 3.58 to $5.82{\mu}m$. The chromosome complements consisted of two pairs of metacentric (chromosomes 1 and 7), four pairs of submetacentrics (chromosomes 4, 6, 8 and 9) and three pairs of subtelocentrics (chromosomes 2, 3 and 5) in M. fauriei but, chromosomes 4 (subtelocentric) and 7 (submetacentric) of M. amurensis have different morphology. Using bicolor FISH, a pair of 45S rDNA loci were observed for both M. fauriei and M. amurensis, but the number and site of the 5S rDNA signal were different in the two species. M. fauriei has two pairs of 5S signals on chromosomes 7 and 8 but, M. amurensis has four paris on chromosomes 3, 4, 7 and 7. Hence, the 5S rDNA is a useful FISH for Maackia species.

Skin Care Effects of Green Tea (녹차의 피부보호효과)

  • Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.311-321
    • /
    • 2005
  • Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.

Anti-inflammatory effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extracts by inhibition of MAPK and NF-κB signaling pathways in RAW264.7 cells (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과)

  • Choi, Doo Jin;Kim, Geum Soog;Choi, Bo-Ram;Lee, Young-Seob;Han, Kyung Sook;Lee, Dong-Sung;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • This study investigated a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts (ALM16), exerts anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and its underlying mechanism. ALM16 was prepared by mixing AM and LE extracts in a ratio of 7:3 (w/w). Cytotoxicity of ALM16 in RAW264.7 cells was not shown up to 200 ㎍/mL of ALM16. The results of this study showed that ALM16 does-dependently inhibits the production of nitric oxide, prostaglandin E2 and pro-inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) in LPS-induced RAW264.7 cells. ALM16 not only markedly reduced the protein expression levels of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells, but also inhibited the nuclear translocation and DNA-binding activity of nuclear factor-kappa B (NF-κB). In addition, ALM16 specifically inhibited the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinases in LPS-stimulated RAW264.7 cells. In conclusion, these results suggest that ALM16 may exert anti-inflammatory effect by modulating mitogen-activated protein kinase and NF-κB signaling pathways.

Heterologous Expression of Interferon α-2b in Lactococcus lactis and its Biological Activity against Colorectal Cancer Cells

  • Meilina, Lita;Budiarti, Sri;Mustopa, Apon Zaenal;Darusman, Huda Shalahudin;Triratna, Lita;Nugraha, Muhammad Ajietuta;Bilhaq, Muhammad Sabiq;Ningrum, Ratih Asmana
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • Type I Interferons (IFNα) are known for their role as biological anticancer agents owing to their cell-apoptosis inducing properties. Development of an appropriate, cost-effective host expression system is crucial for meeting the increasing demand for proteins. Therefore, this study aims to develop codon-optimized IFNα-2b in L. lactis NZ3900. These cells express extracellular protein using the NICE system and Usp45 signal peptide. To validate the mature form of the expressed protein, the recombinant IFNα-2b was screened in a human colorectal cancer cell line using the cytotoxicity assay. The IFNα-2b was successfully cloned into the pNZ8148 vector, thereby generating recombinant L. lactis pNZ8148-SPUsp45-IFNα-2b. The computational analysis of codon-optimized IFNα-2b revealed no mutation and amino acid changes; additionally, the codon-optimized IFNα-2b showed 100% similarity with native human IFNα-2b, in the BLAST analysis. The partial size exclusion chromatography (SEC) of extracellular protein yielded a 19 kDa protein, which was further confirmed by its positive binding to anti-IFNα-2b in the western blot analysis. The crude protein and SEC-purified partial fraction showed IC50 values of 33.22 ㎍/ml and 127.2 ㎍/ml, respectively, which indicated better activity than the metabolites of L. lactis NZ3900 (231.8 ㎍/ml). These values were also comparable with those of the regular anticancer drug tamoxifen (105.5 ㎍/ml). These results demonstrated L. lactis as a promising host system that functions by utilizing the pNZ8148 NICE system. Meanwhile, codon-optimized usage of the inserted gene increased the optimal protein expression levels, which could be beneficial for its large-scale production. Taken together, the recombinant L. lactis IFNα-2b is a potential alternative treatment for colorectal cancer. Furthermore, its activity was analyzed in the WiDr cell line, to assess its colorectal anticancer activities in vivo.

AtERF73/HRE1, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Hypoxia-responsive Cis-acting Elements in Its Promote (애기장대의 AP2/ERF 전사인자인 AtERF73/HRE1의 프로모터에 있어서 저산소 반응 cis-조절 요소의 분석)

  • Hye-Yeon Seok;Huong Thi Tran;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.34-42
    • /
    • 2023
  • In a signal transduction network, from the perception of stress signals to stress-responsive gene ex- pression, binding of various transcription factors to cis-acting elements in stress-responsive promoters coordinate the adaptation of plants to abiotic stresses. Among the AP2/ERF transcription factor family genes, group VII ERF genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/ HRE2, are known to be involved in the response to hypoxia stress in Arabidopsis. In this study, we dissected the HRE1 promoter to identify hypoxia-responsive region(s). The 1,000 bp upstream promoter region of HRE1 showed increased promoter activity in Arabidopsis protoplasts and transgenic plants under hypoxia conditions. Analysis of the promoter deletion series of HRE1, including 1,000 bp, 800 bp, 600 bp, 400 bp, 200 bp, 100 bp, and 50 bp upstream promoter regions, using firefly luciferase and GUS as reporter genes indicated that the -200 to -100 region of the HRE1 promoter is responsible for the transcriptional activation of HRE1 in response to hypoxia. In addition, we identified two putative hypoxia-responsive cis-acting elements, the ERF-binding site and DOF-binding site, in the -200 to -100 region of the HRE1 promoter, suggesting that the expression of HRE1 might be regulated via the ERF transcription factor(s) and/or DOF transcription factor(s). Collectively, our results suggest that HRE1 contains hypoxia-responsive cis-acting elements in the -200 to -100 region of its promoter.

Artesunate inhibits collagen-induced human platelets aggregation through regulation of PI3K/Akt and MAPK pathway (PI3K/Akt 및 MAPK 기전 조절을 통한 Artesunate의 콜라겐 유도의 사람 혈소판 응집 억제효과)

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.57-62
    • /
    • 2022
  • Excessive activation and aggregation of platelets is a major cause of cardiovascular disease. Therefore, inhibition of platelet activation and aggregation is considered an attractive therapeutic target in preventing and treating cardiovascular diseases. In particular, strong platelet activation and aggregation by collagen secreted from the vascular endothelium are characteristic of vascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia species, and has been reported to be effective in anticancer and Alzheimer's disease fields. However, the effect and mechanism of artesunate on collagen-induced platelet activation and aggregation have not been elucidated. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artesunate was clarified. Artesunate inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artesunate decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artesunate strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 106.41 µM. These results suggest that artesunate has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants (식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절)

  • Hye-Yeon Seok;Md Bayzid;Swarnali Sarker;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.956-965
    • /
    • 2023
  • In plants, there are many CCCH zinc finger proteins consisting of three cysteine residues and one histidine residue, which bind to zinc ions with finger configuration. CCCH-type zinc finger proteins are divided into tandem CCCH-type zinc finger (TZF) and non-TZF proteins: TZF proteins contain exactly two tandem CCCH-type zinc finger motifs whereas non-TZF proteins have fewer or greater than two CCCH-type zinc finger motifs. The functions of TZF genes, especially plant-specific RR-TZF genes, have been well studied in several plants, whereas the functional roles of non-TZF genes have not been adequately researched compared to TZF genes. Many non-TZF genes have been identified as being involved in the responses to biotic and abiotic stresses, such as pathogen, high salt, drought, cold, heat, and oxidative stresses. Some non-TZF proteins bind to RNA and are involved in the post-transcriptional regulation of stress-responsive genes in the cytoplasm. In addition, other non-TZF proteins act as transcriptional activators or repressors that regulate the expression of stress-responsive genes in the nucleus. Despite these studies, stress signal transduction and upstream and downstream genes of non-TZF genes have not been sufficiently researched, suggesting that additional studies of the functions of non-TZF genes' functions in plants' stress responses are needed. In this review, we describe non-TZF genes involved in biotic abiotic stress responses in plants and their molecular functions.