• 제목/요약/키워드: biological immune system

검색결과 248건 처리시간 0.024초

Molecules of the Tumor Necrosis Factor (TNF) Receptor and Ligand Superfamilies: Endless Stories

  • Kwon, Byung-Suk;Kwon, Byoung-Se
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.419-428
    • /
    • 1999
  • Tumor necrosis factor (TNF) receptor members have unique structures composed of 2-4 cysteine - rich pseudorepeats in the extracellular domain. On ligation by trimeric ligand molecules, oligomerization of three receptor molecules occurs, which in turn activates the receptor and recruits intracellular signaling molecules to the cytoplasmic tail to initiate biological events. Recently, the numbers of tumor necrosis factor receptor and ligand family members have been rapidly expanding. Functional characterization of the new members has indicated redundant roles with other known members as well as provided insights into novel functions. In particular, identification of soluble decoy receptors which have the ability to bind multiple ligands highlights a complex control mechanism of immune responses by these molecules. Studies of the new members have also revealed that the TNF receptor and ligand family members play an important role in other than the immune system.

  • PDF

APPLICATION OF SIMULATED ANNEALING FOR THE MATHEMATICAL MODELLING OF IMMUNE SYSTEMS

  • 이권순;이영진;정형환
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.129-132
    • /
    • 1992
  • Cellular kinetics formulate the basis of tumor immune system dynamics which may be synthesized mathematically as cascades of bilinear systems which are connected by nonlinear dynamical terms. In this manner, a foundation for the control of syngeneic tumors is presented. We have analyzed the mechanisms of controlling the infiltration of lymphocytes into tumor tissues. Simulated anneal ins, a general-purpose method of multivariate optimization, is applied to combinatorial optimization, which is to find the minimum of a given function depending on many parameters. We compare the results of the different methods including the global optimization algorithm, known as simutated annealing.

  • PDF

Follicular Helper T (Tfh) Cells in Autoimmune Diseases and Allograft Rejection

  • Yun-Hui Jeon;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.219-232
    • /
    • 2016
  • Production of high affinity antibodies for antigens is a critical component for the immune system to fight off infectious pathogens. However, it could be detrimental to our body when the antigens that B cells recognize are of self-origin. Follicular helper T, or Tfh, cells are required for the generation of germinal center reactions, where high affinity antibody-producing B cells and memory B cells predominantly develop. As such, Tfh cells are considered as targets to prevent B cells from producing high affinity antibodies against self-antigens, when high affinity autoantibodies are responsible for immunopathologies in autoimmune disorders. This review article provides an overview of current understanding of Tfh cells and discusses it in the context of animal models of autoimmune diseases and allograft rejections for generation of novel therapeutic interventions.

Inhibitory Effect of Carbamylated Staphylococcal Enterotoxins B on Inflammatory Response in HL-60 Cells

  • Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.96-102
    • /
    • 2014
  • Staphylococcal enterotoxin B (SEB) is bacterial toxin that induces the activation of immune cells. Because the inhibition of pro-inflammatory effect of SEB can resolve the inflammation, I determined the influence of functional or structural change of SEB on immune cells. The post translational modification of protein occurs through carbamylation. Carbamylation can change the structure of proteins and can modify the biological activity of protein. In the present study, I investigated the effect of carbamylated SEB (CSEB) on the inflammatory response mediated by LPS in HL-60 cells. To determine the anti-inflammatory effect of CSEB, I produced carbamylated SEB using potassium cyanate (KCN) and then examined whether CSEB involved in cytokine releases and apoptosis of LPS-stimulated HL-60 cells. Although CSEB had not any effect on the LPS-stimulated HL-60 cells, the protein levels of IL-8, TNF-${\alpha}$ and IL-$1{\beta}$ were significantly decreased by CSEB without cytotoxicity. CSEB also blocked Akt and NF-${\kappa}B$ activation. These results indicate that the suppressive effect of CSEB in LPS-stimulated cytokine releases is occurred by inhibition of Akt and NF-${\kappa}B$ activity. Through further studies, CSEB may be used as anti-inflammatory molecule that makes the immune system more efficient.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

유색미 겨 아라비녹실레인과 운동트레이닝이 Lipopolysaccharide 처치된 흰쥐의 면역인자 및 염증억제에 미치는 영향 (Effects of Arabinoxylan Rice Bran and Exercise Training on Immune Function and Inflammation Response in Lipopolysaccharide-stimulated Rats)

  • 손희정;김형준;채정훈;권형태;여효성;어수주;임예현;김효정;김창근
    • Journal of Applied Biological Chemistry
    • /
    • 제55권1호
    • /
    • pp.41-46
    • /
    • 2012
  • 아라비녹실레인은 발효 유색미 겨에서 추출한 수용성 식이섬유로서 항산화 기능 면역증진 및 염증억제 효과 등이 밝혀져 있다. 이 연구에서는 천연식품소재로서 생체기능성 효과가 우수한 것으로 알려진 아라비녹실레인의 면역기능 및 염증억제 효과를 평가하였다. 이를 위해 흰 쥐를 대상으로 4주간 시료 투여와 운동트레이닝의 효과를 함께 비교하였으며 lipopolysaccharide를 이용하여 염증반응을 유발하였다. 연구 결과에서, 아라비녹실레인 투여에 의한 염증 억제효과를 확인할 수 있었다. 염증반응의 대표적인 지표인 tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)와 interleukin-6 (IL-6)의 활성은 아라비녹실레인의 투여 집단에서 가장 낮게 나타났으며 운동트레이닝 집단이 가장 높게 나타났다. 특히 아라비녹실레인을 섭취하면서 운동을 실시한 집단에서 IL-6와 TNF-${\alpha}$의 염증 활성이 운동트레이닝만을 실시한 집단에 비해 감소된 것으로 나타났다. 이상의 결과에서, 유색미 겨에서 유도된 아라비녹실레인은 운동과 병행하지 않는 단독투여만으로 염증 반응 시 발현되는 대표적인 사이토카인들의 활성을 억제하는 효과를 나타냄으로써 질병예방 및 면역기능증진을 위한 기능성 천연물로서 적용될 수 있는 유효한 가능성을 시사하였다.

Anti-inflammatory Effect of Arbitrary Waveform Generator Treatment in Rats

  • ;;;;;김혜경
    • 대한의생명과학회지
    • /
    • 제14권1호
    • /
    • pp.39-45
    • /
    • 2008
  • Inflammation is the complex biological response of injured tissues to harmful stimuli. A cascade of biochemical events propagates and matures the inflammatory response, involving the local vascular system, the immune system, and various cells within the injured tissue. The immune system is often involved with inflammatory disorders, demonstrated in both allergic reactions and some myopathies, with many immune system disorders resulting in abnormal inflammation. An Arbitrary Waveform Generator (AWG) is a piece of electronic test equipment used to generate electrical waveforms for the treatment of patients. The patients with gastritis and arthritis have been known to have a relatively favorable prognosis with AWG treatment. Accordingly, we examined the effects of AWG treatment in gastritis and arthritis animal model. The compound 48/80 was used to induce animal gastritis model. The tissue malone dialdehyde (MDA) and serum histamine levels, and the activity of superoxide dismutase (SOD) in stomach tissue were measured. The tissue MDA and serum histamine levels in AWG treated groups exhibited the decreased tendency compared with control group, whereas the tissue SOD activity was slightly increased. The Freund's complete adjuvant was used to induce animal arthritis model as well. The paw edema volume and the width of ankle joint were determined. The AWG treatment significantly decreased the paw edema volume after 5th day of treatment. Although further studies should be performed to confirm the effects of AWG treatment, present study suggest that AWG treatment might be used as a complementary treatment for the gastritis or arthritis treatment.

  • PDF

Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach

  • Subrat Kumar Swain;Subhasmita Panda;Basanta Pravas Sahu;Soumya Ranjan Mahapatra;Jyotirmayee Dey;Rachita Sarangi;Namrata Misra
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권2호
    • /
    • pp.132-145
    • /
    • 2024
  • Purpose: Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods: A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results: The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion: Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.

A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells

  • Chen, Ji;Kim, Seol-min;Kwon, Jae Young
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.358-366
    • /
    • 2016
  • The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.