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ABSTRACT

Cellular kinetics formulate the basis of tumor immune
system dynamics which may be synthesized mathematically as
cascades of bilinear systems which are connected by
nonlinear dynamical terms, In this manner, a foundation
for the control of syngeneic tumors is presented, We have
analyzed the mechanisms of controlling the infiltration of
lymphocytes into tumor tissues,

Simulated annealing, a general-purpose wmethod of
sultivariate optimization, is applied to combinatorial
optimization, which is to find the minimus of a given
function depending on many parameters.

Ve compare the results of the different methods
including the global optimization algorithm, known as
simulated annealing,

INTRODUCTTON

It has been generally accepted that T cells have a
crucial role in regulating tumor growth, Considerable
interest has been centered on characterizing the function
of lymphocyte infiltrating into tumors.

It is well known that the generation of cytotoxic T
cells (CTL) is regulated by soluble factors that are
produced by T cells or macrophages (Mp) in response to
antigen. The existence and involvement of new lymphokines
required for the generation of CTL against allogeneic tumor
cells are described by many papers. However, in case of
syngeneic tumor it had not been shown if the soluble
factors are actually involved in the generation of CIL.

Dr. Uede and his colleagues demonstrate that tumor
infiltrating T cells play an important role in the
regulation of inoculated syngeneic tumor cell growth [1-5],
They show that cytotoxic cell generating factor (CGF) is
produced by spleen cells of sensitized rats upon
inoculation of syngeneic tumor cells, CGF promotes the
generation of CTL against T-9 cells.

The main objectives of the present study are: 1) to
establish a mathematical model of the mechanisms of
mononuclear cells infiltrating into tumors: 2) to estimate
parameters of the wmodel: and 3) to draw possible
conclusions,

MATHEMATICAL MODEL

A, Tumor Dynamics

Fisher rats were sensitized with T-9 cells as
described in materials and methods in [1-2}. The results
of the tumor growth in normal or sensitized rats are shown
in [1-5]. We also reviewed briefly in [6].

A widely used deterministic tumor cell proliferation
is givenv by a Gompertz equation of the following form
[7-9):

dN k
= =bNin(— {1
dt n )
vhere N(t): the measure of tumor size, i.e., the number of
tumor cells,
k ¢ the maximum tumor size, and

1/b : the length of time required for the specific
growth rate to decrease by a factor of l/e,
i.e. the e-folding time,
The solution of the Gompertz equation (1) with
initial value N(0) is

k

N(t) = N(0) explin( N(0)

) (1 - ebt)]. (2)

Dr. Uede wentioned that a million syngeneic
gliosarcoma (T-9) cells injected subcutaneously are
sufficient to kill Fisher rats within 2 wmonths [1].
However, they didn't give the data of the largest tumor
size enough to kill Fisher rats. Therefore, equation (2)
are replaced using initial growth data as follows:

N(L) = N(O) explr (1 - 750)] (3)

where A: the initial specific growth rate.
The data are fitted using the least squares wethod and
the estimated parameters are as follows:

b = 0,2755933

A = 2.919033

The curve fitted to data for unperturbed T-9 tumor
cells is illustrated in Fig. 1.

B. Mechanisms of Mononuclear Cells Infiltrating into
Tumors,

The functional description of our model is shown in
Fig. 2.

Dr. Uede and his colleagues showed that the syngeneic
tumor cells are killed by mainly cytotoxic T cells and the
CTL in tumor region migrates in response to IMF-4d and
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Fig. 1 Unperturbed T-9 tumor dynamics,
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Fig. 2 Mechanisms of mononuclear cells infiltrating into
tumors,

IMF-6d. However, they didn't exclude the CTL proliferation
by virtue of interleukin-2 (IL-2).

Based on the phenomenological model, we can make a
mathematical model of the mechanisms of mononuclear cells
infiltrating into tumors due to cell kinetics. These
cellular kinetics are quite well defined from conservation
equations and chemical mass-action principles [10].

dxy Xi

— = - — + u

dt T

dxz X2

— = - — +y

dt T2

dxs X3

—= = - == -5 x3+u (4)
dt T3 !
dxs X, 52 x
il AP ] 3
dt Ty 2

The subscripts are as follows: 1, Th at spleen: 2, Tn at
TIC: 3, CTL at spleen: 4, CTL at tumor: and 5, Tumor
81t CIL migration coefficient from spleen to other
compartments
¢ CIL migration coefficient from spleen to tumor
820 ¢ (5b + 81)/2 '
Sh : max, IMF
81 ¢ wmin, LMF
a (8 - 81)72
B8 : ( slope at x20 }/a
¢ CGF coefficient
¢ CGF saturation
¢ tumor killing rate
¢ tumor killing saturation
: death time constant
assumed T{=Tz, T3=T4.
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The wmode! can be expressed mathematically as five
nonlinear differential equations and three algebraic
equations as above, The nine parameters form the vector,
0, given by: 0 = [7y, 13, 81, 82, ka2, B, xz0. ai, ke 1. The
experimental data and initial ccnditions for the model
simulation are shown in [6].

C. Nonlinear parameter Estimation

Parameter estimation arises in fitting model
containing several unknown parameters to experimental data,
The model consists of nonlinear differential and algebraic
equations, The model is stiff and this infers an
excessively small step size requiring enormous computing
time to solve the system equations. Thus one must choose a
reliable model solver before parameter estimation can
begin. As a means of solving general stiff systems, the
most commonly used methods are semi-implicit Runge-Kutta
and Gear method [11]. In the present paper the IMSL
routine DGEAR is used to integrate the ODE's. After a
model is proposed and solution techniques are chosen, an
objective function that determines the goodness of fit must
be selected.

1) Maximum Likelihood Met hod

To apply the likelihood function assume a
relationship of the form:
Zuj = yuj(0) + £uj (5)

where 2u) = measured value for component j
yuj(0) = computed value of component j from in uth
experiment
0 = vector of adjustable model parameters
€} = residual error, assuming the model is correct.

Assume i) the errors in each experiment are Gaussian: ii)
unknown covariance V, then :

log L(0) = —;;"—nog(—z:—> -1 - % log det M(6) (6)
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Maximizing this is equivalent to minimizing
n
#(0) = (T) log det M(0). (7)

If off-diagonal element of M(9) is =zero (i.e.,
uncorrelated), then the likelihood function reduces to a
simple residual sum of squares which can be minimized to
the fit the observed data, i.e:

n o
#(8) = — 3 log Maa(0) (8)
2 a=l
n
where Maa(0) = ZIEu(B) euT(0)
u=

n
=3 (zug ~ yup) (205 - yus)T
u=}

log L is maximized relative to @ by minimizing
Maa (). Maximum likelihood here is equivalent to
unweighted least squares. This derivations apply only to
experimental runs with no missing data [12].

2) Initial parameter Guess

In the above kinetic model, it is necessary to fit
nonlinear equation to experiwental data by applying least
squares. Every parameter optimization methods require that
one supply an initial guess 61 for the values of the
parameters, Unfortunately, the outcome of such an analysis
often depends on the values of the unknown parameters
supplied at the beginning of the program. The choice of a
good initial guess can spetl the difference between success
and failure in locating the optimum, or between rapid and
slow convergence to the solution. Since there is no single
best way to begin this search, we must rely heavily on
intuitioh and prior knowledge in selecting the initial
guess. The techniques below are the most likely to succeed
[13): 1) use of prior information: 2} cyclic parameter
estimation: 3) linearization: and 4) grid search,

RESULTS AND DISCUSSION

The problem under consideration here is that of using
the least square method of curve fitting the model which
may be nonlinear in its parameters. Also, all the measured
variables are subject to error. This nonlinear
minimization problem requires an iterative procedure
starting from some initial approximations. As mentioned
above, the ability to converge, the converged parameter
values, and the sum of squares of residuals at convergence
are heavily dependent upon the initial parameter estimates.

The IMSL routine DGEAR was wused to find
approximations to the solution of a system of first order
ordinary differential equations with initial conditions.
The finite difference, Levenberg-Marquardt routine ZXSSQ
from the IMSL library was used to solve nonlinear least
squares problems [14]. A partial summation was used in the
objective function to account for the missing data, The
problem considered is to estimate nine parameters from
seventeen measurements which have incomplete data. The
surface formed from sum of squares of residuals in the
parameter space is too flat.” This means that there exists
lots of local minima, This is very difficult to find
optimal solution.

The solution found by the investigator is shown in
Fig. 3. The problem has common feature, that is,
incomplete observation which is usually encountered in
biomedical data. This can be overcomed using the EM
algorithm which consists of an expectation step followed by

a maximization step.

CTL DYNAMICS

50
45 P ’

40 / \\
Y- [— . / . L
25 /

; /
/

CELLS
W
2

T~

10 -
5 - W—*‘;/
0 i 2 3 a 5 6
TIME {DAY]

TUMOR DYNAMICS
N |

/
N

401

I e MG

20 ] v .
./'.\\*\\\p

CELLS
(Millions)

TIME [DAY]

CGF DYNAMICS
™

60

50

40

304

20

10 f-forn e S d

% SPECIFIC CHROMIUM RELEASE

o} T T T
0 1 2 3

TIME [DAY]

A
(4]
D

LMF-b DYNAMICS

CELL NUMBER/ 5 HPF
88
L

TIME [DAY]

= MEASUREMENT —— ESTIMATE

Fig. 3 Model with optimal parameter estimates.
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The parameter estimation algorithm we have used
converges rapidly for almost any initial estimates of the
parameters. The rapid convergence is easy to fall into
unfavorable local minima, The method of simulated
annealing has recently attracted significant attention as
suitable for optimization problems [15]. The method has
the idea from the fact that the crystal is the state of
minioum energy for the system and nature is able to find
the minimum energy state as slowly cooling. In fact, if a
liquid metal is cooled quickly or "quenched,” it does not
reach this state but rather ends up in a polycrystalline or
amorphous state having somewhat higher energy,

SIMULATED ANNEALING TECHNIQUES

Simulated annealing is a well-known powerful global
optimization algorithm, introduced in combinatorial
optimizations [16]. It is based on random moves, and has
the ability to overcome local minima, found on the way
tovard a better minimum, with uphill moves.
complete discussion, see [17).

The result has dependence on neither the initial
condition of the metal, nor any of the details of the
statistical annealing process. However, The drawback of
using simulated annealing is that the computation time is
quite long.

For a more

CONCLUSIONS

A sisulated annealing algorithm for the mathematical
modelling of immune systems with multiple parameters has
been presented, We cogpare the rosults of the different
methods including the global optimization algorithm, known
as simulated annealing, when used to solve optimization
problen,

Although simulated annealing is computationally very
expensive, it may be an important method for the model
building where numerous constraints are present,
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