Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0014

A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells  

Chen, Ji (Department of Biological Sciences, Sungkyunkwan University)
Kim, Seol-min (Department of Biological Sciences, Sungkyunkwan University)
Kwon, Jae Young (Department of Biological Sciences, Sungkyunkwan University)
Abstract
The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.
Keywords
Drosophila melanogaster; enteroendocrine cells; regulatory peptides;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Beehler-Evans, R., and Micchelli, C.A. (2015). Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 142, 654-664.   DOI
2 Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221.   DOI
3 Brown, M.R., Crim, J.W., Arata, R.C., Cai, H.N., Chun, C., and Shen, P. (1999). Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035-1042.   DOI
4 Chen, Y., Veenstra, J.A., Davis, N.T., and Hagedorn, H.H. (1994). comparative study of leucokinin-immunoreactive neurons in insects. Cell Tissue Res. 276, 69-83.   DOI
5 Chen, J., Choi, M.S., Mizoguchi, A., Veenstra, J.A., Kang, K., Kim, Y.J., and Kwon, J.Y. (2015). Isoform-specific expression of the neuropeptide orcokinin in Drosophila melanogaster. Peptides 68, 50-57.   DOI
6 Dubreuil, R.R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. Int. J. Biochem. Cell Biol. 36, 745-752.
7 Engelstoft, M.S., Egerod, K.L., Lund, M.L., and Schwartz, T.W. (2013). Enteroendocrine cell types revisited. Curr. Opin. Pharmacol. 13, 912-921.   DOI
8 Hansen, K.K., Hauser, F., Williamson, M., Weber, S.B., and Grimmelikhuijzen, C.J. (2011). The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochem. Biophys. Res. Commun. 404, 184-189.   DOI
9 Hergarden, A.C., Tayler, T.D., and Anderson, D.J. (2012). Allatostatin- A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sc.i USA 109, 3967-3972.   DOI
10 LaJeunesse, D.R., Johnson, B., Presnell, J.S., Catignas, K.K., and Zapotoczny, G. (2010). Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol. 10, 14.   DOI
11 Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.   DOI
12 Lee, G., and Park, J.H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167, 311-323.   DOI
13 Lee, K.S., You, K.H., Choo, J.K., Han, Y.M., and Yu, K. (2004). Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279, 50781-50789.   DOI
14 Melcher, C., and Pankratz, M.J. (2005). Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 3, e305.   DOI
15 Lee, K.S., Kwon, O.Y., Lee, J.H., Kwon, K., Min, K.J., Jung, S.A., Kim, A.K., You, K.H., Tatar, M., and Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERKmediated insulin signalling. Nat. Cell Biol. 10, 468-475.   DOI
16 Li, S., Torre-Muruzabal, T., Sogaard, K.C., Ren, G.R., Hauser, F., Engelsen, S.M., Podenphanth, M.D., Desjardins, A., and Grimmelikhuijzen, C.J. (2013). Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain. PLoS ONE 8, e76131.   DOI
17 Luan, H., Lemon, W.C., Peabody, N.C., Pohl, J.B., Zelensky, P.K., Wang, D., Nitabach, M.N., Holmes, T.C., and White, B.H. (2006). Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J. Neurosci. 26, 573-584.   DOI
18 Micchelli, C.A., and Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475-479.   DOI
19 Min, S., Chae, B., Jang, Y.H., Choi, S., Lee, S., Jeong, Y.T., Jones, W.D., Moon, S.J., Kim, Y.J., and Chung, J. (2016). Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol., in press.
20 Nassel, D.R., and Winther, A.M. (2010). Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42-104.   DOI
21 Ohlstein, B., and Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470-474.   DOI
22 Price, M.D., Merte, J., Nichols, R., Koladich, P.M., Tobe, S.S., and Bendena, W.G. (2002). Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 23, 787-794.   DOI
23 Park, J.H., and Kwon, J.Y. (2011). A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol. Cells 32, 375-381.   DOI
24 Park, S., Sonn J.Y., Oh Y., Lim C., and Choe J. (2014). SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol. Cells 37, 295-301.   DOI
25 Park, J.H., Chen, J., Jang, S., Ahn, T.J., Kang, K., Choi, M.S., and Kwon, J.Y. (2016). A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett., in press.
26 Psichas, A., Reimann, F., and Gribble, F.M. (2015). Gut chemosensing mechanisms. J. Clin. Invest. 125, 908-917.   DOI
27 Reiher, W., Shirras, C., Kahnt, J., Baumeister, S., Isaac, R.E., and Wegener, C. (2011). Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 10, 1881-1892.   DOI
28 Scopelliti, A., Cordero, J.B., Diao, F., Strathdee, K., White, B.H., Sansom, O.J., and Vidal, M. (2014). Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr. Biol. 24, 1199-1211.   DOI
29 Siviter, R.J., Coast, G.M., Winther, A.M., Nachman, R.J., Taylor, C.A., Shirras, A.D., Coates, D., Isaac, R.E., and Nassel, D.R. (2000). Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J. Biol. Chem. 275, 23273-23280.   DOI
30 Song, W., Veenstra, J.A., and Perrimon, N. (2014). Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 9, 40-47.   DOI
31 Vanderveken, M., and O'Donnell, M.J. (2014). Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K(+) transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Arch. Insect Biochem. Physiol. 85, 76-93.   DOI
32 Veenstra, J.A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res. 336, 309-323.   DOI
33 Veenstra, J.A., and Ida, T. (2014). More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 357, 607-621.   DOI
34 Veenstra, J.A., Agricola, H.J., and Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499-516.   DOI
35 Wang, C., Guo, X., Dou, K., Chen, H., and Xi, R. (2015). Ttk69 acts as a master repressor of enteroendocrine cell specification in Drosophila intestinal stem cell lineages. Development 142, 3321-3331.   DOI
36 Wegener, C., and Veenstra, J.A. (2015). Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr. Opin. Insect Sci. 11, 8-13.   DOI
37 Williamson, M., Lenz, C., Winther, A.M., Nassel, D.R., and Grimmelikhuijzen, C.J. (2001). Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster. Biochem. Biophys. Res. Commun. 281, 544-550.   DOI
38 Wu, Q., Wen, T., Lee, G., Park, J.H., Cai, H.N., and Shen, P. (2003). Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147-161.   DOI
39 Zeng, X., and Hou, S.X. (2015). Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142, 644-653.   DOI