• Title/Summary/Keyword: biological immune system

Search Result 243, Processing Time 0.047 seconds

APPLICATION OF SIMULATED ANNEALING FOR THE MATHEMATICAL MODELLING OF IMMUNE SYSTEMS

  • Lee, Kwon-Soon;Lee, Young-Jin;Chung, Hyeng-Hwan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.129-132
    • /
    • 1992
  • Cellular kinetics formulate the basis of tumor immune system dynamics which may be synthesized mathematically as cascades of bilinear systems which are connected by nonlinear dynamical terms. In this manner, a foundation for the control of syngeneic tumors is presented. We have analyzed the mechanisms of controlling the infiltration of lymphocytes into tumor tissues. Simulated anneal ins, a general-purpose method of multivariate optimization, is applied to combinatorial optimization, which is to find the minimum of a given function depending on many parameters. We compare the results of the different methods including the global optimization algorithm, known as simutated annealing.

  • PDF

Follicular Helper T (Tfh) Cells in Autoimmune Diseases and Allograft Rejection

  • Yun-Hui Jeon;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.219-232
    • /
    • 2016
  • Production of high affinity antibodies for antigens is a critical component for the immune system to fight off infectious pathogens. However, it could be detrimental to our body when the antigens that B cells recognize are of self-origin. Follicular helper T, or Tfh, cells are required for the generation of germinal center reactions, where high affinity antibody-producing B cells and memory B cells predominantly develop. As such, Tfh cells are considered as targets to prevent B cells from producing high affinity antibodies against self-antigens, when high affinity autoantibodies are responsible for immunopathologies in autoimmune disorders. This review article provides an overview of current understanding of Tfh cells and discusses it in the context of animal models of autoimmune diseases and allograft rejections for generation of novel therapeutic interventions.

Inhibitory Effect of Carbamylated Staphylococcal Enterotoxins B on Inflammatory Response in HL-60 Cells

  • Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • Staphylococcal enterotoxin B (SEB) is bacterial toxin that induces the activation of immune cells. Because the inhibition of pro-inflammatory effect of SEB can resolve the inflammation, I determined the influence of functional or structural change of SEB on immune cells. The post translational modification of protein occurs through carbamylation. Carbamylation can change the structure of proteins and can modify the biological activity of protein. In the present study, I investigated the effect of carbamylated SEB (CSEB) on the inflammatory response mediated by LPS in HL-60 cells. To determine the anti-inflammatory effect of CSEB, I produced carbamylated SEB using potassium cyanate (KCN) and then examined whether CSEB involved in cytokine releases and apoptosis of LPS-stimulated HL-60 cells. Although CSEB had not any effect on the LPS-stimulated HL-60 cells, the protein levels of IL-8, TNF-${\alpha}$ and IL-$1{\beta}$ were significantly decreased by CSEB without cytotoxicity. CSEB also blocked Akt and NF-${\kappa}B$ activation. These results indicate that the suppressive effect of CSEB in LPS-stimulated cytokine releases is occurred by inhibition of Akt and NF-${\kappa}B$ activity. Through further studies, CSEB may be used as anti-inflammatory molecule that makes the immune system more efficient.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Effects of Arabinoxylan Rice Bran and Exercise Training on Immune Function and Inflammation Response in Lipopolysaccharide-stimulated Rats (유색미 겨 아라비녹실레인과 운동트레이닝이 Lipopolysaccharide 처치된 흰쥐의 면역인자 및 염증억제에 미치는 영향)

  • Son, Hee-Jeong;Kim, Hyung-Jun;Chae, Jeong-Hoon;Kwon, Hyung-Tae;Yeo, Hyo-Seong;Eo, Su-Ju;Leem, Yea-Hyun;Kim, Hyo-Jeong;Kim, Chang-Keun
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • Arabinoxylan (Ara) rice bran has been shown to be a potent biological response modifier as manifested by stimulation of different arms of the immune system. We examined the effects of Ara rice bran and exercise on the immune function and cytokines in lipopolysaccharide (LPS)-stimulated rats. As the results, tumor necrosis factor-${\alpha}$ as representative inflammatory cytokines showed a significantly lower in Ara supplement group, thus the Ara rice bran had a higher inhibitory activity than the both exercise and control group. However, 4 weeks of exercise training significantly increased inflammatory reactions rather than treatment with Ara in LPS-treated rats. The Ara rice bran acted to decrease the inflammatory reaction. These results suggest that the supplement of Ara rice bran is likely contribute to inflammation response and the Ara rice bran can be used as a possible safe alternative to the immunotherapeutic modalities.

Anti-inflammatory Effect of Arbitrary Waveform Generator Treatment in Rats

  • Kim, Myung-Gyou;Lee, Se-Na;Seo, Il-Bok;Leem, Kang-Hyun;Ham, Kee-Sun;Kim, Hye-Kyung
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • Inflammation is the complex biological response of injured tissues to harmful stimuli. A cascade of biochemical events propagates and matures the inflammatory response, involving the local vascular system, the immune system, and various cells within the injured tissue. The immune system is often involved with inflammatory disorders, demonstrated in both allergic reactions and some myopathies, with many immune system disorders resulting in abnormal inflammation. An Arbitrary Waveform Generator (AWG) is a piece of electronic test equipment used to generate electrical waveforms for the treatment of patients. The patients with gastritis and arthritis have been known to have a relatively favorable prognosis with AWG treatment. Accordingly, we examined the effects of AWG treatment in gastritis and arthritis animal model. The compound 48/80 was used to induce animal gastritis model. The tissue malone dialdehyde (MDA) and serum histamine levels, and the activity of superoxide dismutase (SOD) in stomach tissue were measured. The tissue MDA and serum histamine levels in AWG treated groups exhibited the decreased tendency compared with control group, whereas the tissue SOD activity was slightly increased. The Freund's complete adjuvant was used to induce animal arthritis model as well. The paw edema volume and the width of ankle joint were determined. The AWG treatment significantly decreased the paw edema volume after 5th day of treatment. Although further studies should be performed to confirm the effects of AWG treatment, present study suggest that AWG treatment might be used as a complementary treatment for the gastritis or arthritis treatment.

  • PDF

A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells

  • Chen, Ji;Kim, Seol-min;Kwon, Jae Young
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.358-366
    • /
    • 2016
  • The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.

Inhibition of LSD1 phosphorylation alleviates colitis symptoms induced by dextran sulfate sodium

  • Oh, Chaeyoon;Jeong, Jiyeong;Oh, Se Kyu;Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.385-390
    • /
    • 2020
  • Inflammatory Bowel Disease is caused by an acute or chronic dysfunction of the mucosal inflammatory system in the intestinal tract. In line with the results of our previous study, wherein we found that the PKCα-LSD1-NF-κB signaling plays a critical role in the prolonged activation of the inflammatory response, we aimed to investigate the effect of signaling on colitis in the present study. Lsd1 S112A knock-in (Lsd1SA/SA) mice, harboring a deficiency in phosphorylation by PKCα, exhibited less severe colitis symptoms and a relatively intact colonic epithelial lining in dextran sulfate sodium (DSS)-induced colitis models. Additionally, a reduction in pro-inflammatory gene expression and immune cell recruitment into damaged colon tissues in Lsd1SA/SA mice was observed upon DSS administration. Furthermore, LSD1 inhibition alleviated colitis symptoms and reduced colonic inflammatory responses. Both LSD1 phosphorylation and its activity jointly play a role in the progression of DSS-induced colitis. Therefore, the inhibition of LSD1 activity could potentially protect against the colonic inflammatory response.

Change Detection Algorithm based on Positive and Negative Selection of Developing T-cell (T세포 발생과정의 긍정 및 부정 선택에 기반한 변경 검사 알고리즘)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2003
  • In this paper, we modeled positive selection and negative selection that is developing process of cytotoxic T-cell that plays important role in biological immune system. Also, we developed change detection algorithm, which is very Important part in detecting data change by intrusion and data infection by computer virus. Proposed method is the algorithm that produces MHC receptor lot recognizing self and antigen detector for recognizing non-self. Therefore, proposed method detects self and intruder by two type of detectors like real immune system. We show the effectiveness and characteristics of proposed change detection algorithm by simulation about point and block change of self file.