• Title/Summary/Keyword: biological cells

Search Result 4,903, Processing Time 0.029 seconds

Effect of Mild-Thiol Reducing Agents and ${\alpha}2,3$-Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells

  • Chang, Kern Hee;Jeong, Yeon Tae;Kwak, Chan Yeong;Choi, One;Kim, Jung Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.699-706
    • /
    • 2013
  • We have previously reported that N-acetylcysteine (NAC) not only delayed apoptosis but also enhanced the production of recombinant erythropoietin (EPO) in Chinese hamster ovary (CHO) cell culture. To investigate the production enhancement mechanism, the effects of similar thiol-reducing agents were studied. Intriguingly, all mild reducing agents examined including mercaptoethanesulfonic acid (MESNA), thiolactic acid (TLA), and thioglycolate (TG) were shown to block apoptosis and increase EPO production. A pulse-chase study of EPO secretion revealed that all four thiol-reducing agents increased the EPO secretion rate; among them TLA showed the highest rate. In terms of product quality, the sialic acid content of the glycoprotein is one of the most important factors. It was reported that a number of glycoproteins produced by CHO cells often have incomplete sialylation, particularly under high-producing conditions. Human ${\alpha}2,3$-sialyltransferase (${\alpha}2,3$-ST) was introduced into EPO-producing CHO cells in order to compensate for the reduced sialylation during supplementation with NAC. When ${\alpha}2,3$-ST was expressed in the presence of NAC, reduced sialylation was restored and an even more sialylated EPO was produced. Thus, our study is significant in that it offers increased EPO production while still allowing the prevention of decreased sialylation of EPO.

Study of Anti-microbial Activities and Anti-inflammatory Effects of Chamomile (Matricaria chamomilla) Extracts in HaCaT cells (HaCaT 세포주에서 캐모마일 (Matricaria chamomilla) 추출물의 항병원 성 및 항염 효과에 관한 연구)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Kim, Sang-Yong;Han, Nam Kyu;Ha, Jae Sun;Kim, Young Min
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Chamomile (Matricaria chamomilla), a member of the Asteraceae family, is a well-known for medicinal plant and can be found in India and Europe. Chamomile is an effective sedative and various medical effects. But, the effects of acne treatment by chamomile were not investigated. Therefore, we assessed the anti-oxidant effects, anti-microbial activity and anti-inflammatory effects by chamomile extracts in HaCaT keratinocyte cells. Anti-oxidant effects of chamomile extracts were investigated by DPPH assay. Also, results of MTT assay was demonstrated that chamomile extracts did not have a cytotoxic effect in HaCaT cells. To assess the antimicrobial activity, we determined formation of inhibition zone of Propionibacterium acnes by extracts from chamomile. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induces production of inflammatory cytokines such as interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6 and IL-8 and expression of COX-2. Chamomile extracts could inhibit TNF-${\alpha}$-induced mRNA expression levels of IL-$1{\beta}$, IL-6, IL-8 and COX-2 gene. These results demonstrated the possibility of chamomile for prevention and treatment of skin inflammatory diseases such as acne.

Effect of Fish Serum on the Primary Monolayer Culture of Catfish (Silurus asotus) Hepatocytes (어류혈청이 메기(Silurus asotus) 간세포의 단층배양에 미치는 영향)

  • Kwon, Hyuk-Chu;Choi, Seong-Hee;Kim, Eun-Hee;Han, Deug-Woo;Kwon, Joon-Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.1
    • /
    • pp.23-26
    • /
    • 2006
  • Effects of sera from several fish species and insulin on the development of cultured Silurus asotus hepatocytes were investigated. Hepatocytes with high viability (95%) were obtained from the livers of male catfish by two step collagenase perfusion. Isolated hepatocytes, initially showed a typical round-shape, firmly attached to the culture dish within 24 h. In the presence of catfish serum, hepatocytes attached each other, spread well on the dish and developed into monolayer after 3-4 days of incubation. Cells within the established monolayer became polygonal in shape and their nuclei and boundaries being clearly visible under the microscope. In contrast, when incubated in FBS-supplemented or serum-free medium, cells managed to form small clusters, each made of 2-10 cells. Cells in FBS-supplemented medium further developed into larger clusters. However, these clusters failed to develope into monolayer. In addition, when insulin was deprived from culture medium, formation of monolayer also failed. From these data, it can be concluded that the presence of both catfish serum and insulin is necessary for the formation of monolayer of catfish hepatocytes and the functional role of fish serum may differ from that of insulin and can not be displaced by FBS-supplementation.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Reduced EGFR Level in eIF2α Phosphorylation-Deficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress

  • Kim, Mi-Jeong;Choi, Woo-Gyun;Ahn, Kyung-Ju;Chae, In Gyeong;Yu, Rina;Back, Sung Hoon
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.264-275
    • /
    • 2020
  • Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylation-deficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylation-deficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.

FXRα Down-Regulates LXRα Signaling at the CETP Promoter via a Common Element

  • Park, Sung-Soo;Choi, Hojung;Kim, Seung-Jin;Kim, Ok Jin;Chae, Kwon-Seok;Kim, Eungseok
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.409-414
    • /
    • 2008
  • The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor ${\alpha}$ ($FXR{\alpha}$; NR1H4) down-regulates CETP expression in HepG2 cells. A $FXR{\alpha}$ ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that $FXR{\alpha}$ could bind to the liver X receptor ${\alpha}$ ( $LXR{\alpha}$; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. $FXR{\alpha}$ suppressed $LXR{\alpha}$-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between $FXR{\alpha}$ and $LXR{\alpha}$ for DR4RE. Furthermore, the addition of CDCA together with a $LXR{\alpha}$ ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that $FXR{\alpha}$ down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this $FXR{\alpha}$ binding is essential for $FXR{\alpha}$ inhibition of $LXR{\alpha}$-induced CETP expression.

An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo

  • Yoo, Hyunjin;Park, Kyunghyuk;Lee, Jaehoon;Lee, Seunga;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.602-612
    • /
    • 2021
  • DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.

Radish phospholipid hydroperoxide glutathione peroxidase provides protection against hydroperoxide-mediated injury in mouse 3T3 fibroblasts

  • Li, Tian;Liu, Guan-Lan;Duan, Ming-Xing;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.648-654
    • /
    • 2009
  • Overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) genes has been reported to play an important role in protecting host cells from oxidative injury in several model systems. A radish phospholipid hydroperoxide glutathione peroxidase (RsPHGPx) known to have high catalytic activity was applied to mouse 3T3 fibroblasts to determine the protective effects of PHGPx against oxidative injury triggered by hydroperoxides such as hydrogen peroxide ($H_2O_2$), tert-butyl hydroperoxide (t-BHP) and phosphatidylcholine hydroperoxide (PCOOH). We observed that preincubation of cells with RsPHGPx significantly increased cell viability, reduced levels of malondialdehyde (MDA), inhibited generation of reactive oxygen species (ROS), and maintained natural cell shapes after treatment with $H_2O_2$, t-BHP or PCOOH, indicating that the exogenous RsPHGPx can act as an effective hydroperoxide-scavenger and may also protect target cells from oxidative damage. These results suggest the possibility for use of RsPHGPx as a therapeutic protectant.

DRG2 Regulates G2/M Progression via the Cyclin B1-Cdk1 Complex

  • Jang, Soo Hwa;Kim, Ah-Ram;Park, Neung-Hwa;Park, Jeong Woo;Han, In-Seob
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.699-704
    • /
    • 2016
  • Developmentally regulated GTP-binding protein 2 (DRG2) plays an important role in cell growth. Here we explored the linkage between DRG2 and G2/M phase checkpoint function in cell cycle progression. We observed that knockdown of DRG2 in HeLa cells affected growth in a wound-healing assay, and tumorigenicity in nude mice xenografts. Flow cytometry assays and [$^3H$] incorporation assays indicated that G2/M phase arrest was responsible for the decreased proliferation of these cells. Knockdown of DRG2 elicited down-regulation of the major mitotic promoting factor, the cyclin B1/Cdk1 complex, but upregulation of the cell cycle arresting proteins, Wee1, Myt1, and p21. These findings identify a novel role of DRG2 in G2/M progression.

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF