Browse > Article
http://dx.doi.org/10.4014/jmb.1303.03046

Effect of Mild-Thiol Reducing Agents and ${\alpha}2,3$-Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells  

Chang, Kern Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Jeong, Yeon Tae (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Kwak, Chan Yeong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Choi, One (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Kim, Jung Hoe (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 699-706 More about this Journal
Abstract
We have previously reported that N-acetylcysteine (NAC) not only delayed apoptosis but also enhanced the production of recombinant erythropoietin (EPO) in Chinese hamster ovary (CHO) cell culture. To investigate the production enhancement mechanism, the effects of similar thiol-reducing agents were studied. Intriguingly, all mild reducing agents examined including mercaptoethanesulfonic acid (MESNA), thiolactic acid (TLA), and thioglycolate (TG) were shown to block apoptosis and increase EPO production. A pulse-chase study of EPO secretion revealed that all four thiol-reducing agents increased the EPO secretion rate; among them TLA showed the highest rate. In terms of product quality, the sialic acid content of the glycoprotein is one of the most important factors. It was reported that a number of glycoproteins produced by CHO cells often have incomplete sialylation, particularly under high-producing conditions. Human ${\alpha}2,3$-sialyltransferase (${\alpha}2,3$-ST) was introduced into EPO-producing CHO cells in order to compensate for the reduced sialylation during supplementation with NAC. When ${\alpha}2,3$-ST was expressed in the presence of NAC, reduced sialylation was restored and an even more sialylated EPO was produced. Thus, our study is significant in that it offers increased EPO production while still allowing the prevention of decreased sialylation of EPO.
Keywords
CHO cells; erythropoietin; sialylation; sialyltransferase; thiol-reducing agent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bragonzi, A., G. Distefano, L. D. Buckberry, G. Acerbis, C. Foglieni, D. Lamotte, et al. 2000. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as a universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta 1474: 273-282.   DOI   ScienceOn
2 Ailor, E., N. Takahashi, Y. Tsukamoto, K. Masuda, B. A. Rahman, D. L. Jarvis, et al. 2000. N-Glycan patterns of human transferrin produced in Trichoplusia ni insect cells: Effects of mammalian galactosyltransferase. Glycobiology 10: 837-847.   DOI   ScienceOn
3 Alberini, C. M., P. Bet, C. Milstein, and R. Sitia. 1990. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 347: 485-487.   DOI   ScienceOn
4 Arden, N. and M. J. Betenbaugh. 2004. Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends Biotechnol. 22: 174-180.   DOI   ScienceOn
5 Bork, D., W. Reutter, W. Weidemann, and R. Horstkorte. 2007. Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett. 581: 4195-4198.   DOI   ScienceOn
6 Chang, K. H., K. S. Kim, and J. H. Kim. 1999. N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic. Res. 30: 85-91.   DOI   ScienceOn
7 Choi, O., N. Tomiya, J. H. Kim, J. M. Slavicek, M. J. Betenbaugh, and Y. C. Lee. 2003. N-Glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology 13: 539-548.   DOI   ScienceOn
8 Chung, B. S., Y. T. Jeong, K. H. Chang, J. Kim, and J. H. Kim. 2001. Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J. Microbiol. Biotechnol. 11: 1087-1092.
9 Dordal, M. S., F. F. Wang, and E. Goldwasser. 1985. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293-2299.   DOI   ScienceOn
10 Ferrari, G., C. Y. Yan, and L. A. Greene. 1995. N-Acetylcysteine (D- and L-steroisomers) prevents apoptotic death of neuronal cells. J. Neurosci. 15: 2857-2866.
11 Jeong, Y. T., O. Choi, H. R. Lim, Y. D. Son, H. J. Kim, and J. H. Kim. 2008. Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J. Microbiol. Biotechnol. 18: 1945-1952.
12 Fukuta, K., T. Yokomatsu, R. Abe, M. Asanagi, and T. Makino. 2000. Genetic engineering of CHO cells producing human interferon-${\gamma}$ by transfection of sialyltransferases. Glycoconj. J. 17: 895-904.   DOI   ScienceOn
13 Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936.
14 Gu, X. and D. I. C. Wang. 1998. Improvement of interferon-${\gamma}$ sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58: 642-647.   DOI   ScienceOn
15 Jassal, R., N. Jenkins, J. Charlwood, P. Camilleri, R. Jefferis, and J. Lund. 2001. Sialylation of human IgG-Fc carbohydrate by transfected rat ${\alpha}2,6$-sialyltransferase. Biochem. Biophys. Res. Commun. 286: 243-249.   DOI   ScienceOn
16 Kaufmann, H., X. Mazur, R. Marone, J. E. Bailey, and M. Fussenegger. 2001. Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol. Bioeng. 72: 592-602.   DOI   ScienceOn
17 Lodish, H. F. and N. Kong. 1993. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum. J. Biol. Chem. 268: 20598-20605.
18 Santell, L., T. Ryll, T. Etcheverry, M. Santoris, G. Dutina, A. Wang, et al. 1999. Aberrant metabolic sialylation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures. Biochem. Biophys. Res. Commun. 258: 132-137.   DOI   ScienceOn
19 Nakagawa, H., Y. Kawamura, K. Kato, I. Shimada, Y. Arata, and N. Takahashi. 1995. Identification of neutral and sialyl Nlinked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226: 130-138.   DOI   ScienceOn
20 Oh, H. K., M. K. So, J. Yang, H. C. Yoon, J. S. Ahn, J. M. Lee, et al. 2005. Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-${\beta}$-1a. Biotechnol. Prog. 21: 1154-1164.
21 Thorens, B. and P. Vassalli. 1986. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321: 618-620.   DOI   ScienceOn
22 Oster, T., C. Thioudellet, I. Chevalot, C. Masson, M. Wellman, A. Marc, et al. 1993. Induction of recombinant human gammaglutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem. Biophys. Res. Commun. 193: 406-412.   DOI   ScienceOn
23 Son, Y. D., Y. T. Jeong, S. Y. Park, and J. H. Kim. 2011. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology. 21: 1019-1028.   DOI   ScienceOn
24 Takeuchi, M., S. Takasaki, H. Miyazaki, T. Kato, S. Hoshi, N. Kochibe, et al. 1988. Comparative study of the asparaginelinked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657-3663.
25 Wong, N. S. C., M. G. S. Yap, and D. I. C. Wang. 2006. Enhancing recombinant glycoprotein sialylation through CMPsialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016.   DOI   ScienceOn
26 Troy, C. M., D. Derossi, A. Prochiantz, L. A. Greene, and M. L. Shelanski. 1996. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J. Neurosci. 16: 253-261.
27 Weikert, S., D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, et al. 1999. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116-1121.   DOI   ScienceOn
28 Weiss, P. and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169-184.
29 Yamamoto, S., S. Hase, S. Fukuda, O. Sano, and T. Ikenaka. 1989. Structures of the sugar chains of interferon-gamma produced by human myelomonocyte cell line HBL-38. J. Biochem. 105: 547-555.
30 Yan, C. Y., G. Ferrari, and L. A. Greene. 1995. N-Acetylcysteinepromoted survival of PC12 cells is glutathione-independent but transcription-dependent. J. Biol. Chem. 270: 26827-26832.   DOI   ScienceOn