Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0084

An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo  

Yoo, Hyunjin (Department of Biological Sciences, Seoul National University)
Park, Kyunghyuk (Department of Biological Sciences, Seoul National University)
Lee, Jaehoon (Department of Biological Sciences, Seoul National University)
Lee, Seunga (Department of Biological Sciences, Seoul National University)
Choi, Yeonhee (Department of Biological Sciences, Seoul National University)
Abstract
DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.
Keywords
bisulfite sequencing library; DNA methylation; embryo; methylome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salas, L.A., Wiencke, J.K., Koestler, D.C., Zhang, Z., Christensen, B.C., and Kelsey, K.T. (2018). Tracing human stem cell lineage during development using DNA methylation. Genome Res. 28, 1285-1295.   DOI
2 Xiang, D., Venglat, P., Tibiche, C., Yang, H., Risseeuw, E., Cao, Y., Babic, V., Cloutier, M., Keller, W., Wang, E., et al. (2011). Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol. 156, 346-356.   DOI
3 Locke, W.J., Guanzon, D., Ma, C., Liew, Y.J., Duesing, K.R., Fung, K.Y.C., and Ross, J.P. (2019). DNA methylation cancer biomarkers: translation to the clinic. Front. Genet. 10, 1150.   DOI
4 Allen, G.C., Flores-Vergara, M.A., Krasynanski, S., Kumar, S., and Thompson, W.F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320-2325.   DOI
5 Zeng, Y. and Chen, T. (2019). DNA methylation reprogramming during mammalian development. Genes (Basel) 10, 257.   DOI
6 Yu, B., Dong, X., Gravina, S., Kartal, O., Schimmel, T., Cohen, J., Tortoriello, D., Zody, R., Hawkins, R.D., and Vijg, J. (2017). Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell Rep. 9, 397-407.   DOI
7 Bouyer, D., Kramdi, A., Kassam, M., Heese, M., Schnittger, A., Roudier, F., and Colot, V. (2017). DNA methylation dynamics during early plant life. Genome Biol. 18, 179.   DOI
8 Chatterjee, A., Stockwell, P.A., Rodger, E.J., and Morison, I.M. (2012). Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res. 40, e79.   DOI
9 Clark, S.J., Smallwood, S.A., Lee, H.J., Krueger, F., Reik, W., and Kelsey, G. (2017). Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534-547.   DOI
10 Deal, R.B. and Henikoff, S. (2011). The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56-68.   DOI
11 Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89, 1827-1831.   DOI
12 Hofmeister, B.T., Lee, K., Rohr, N.A., Hall, D.W., and Schmitz, R.J. (2017). Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 18, 155.   DOI
13 Bell, C.G., Lowe, R., Adams, P.D., Baccarelli, A.A., Beck, S., Bell, J.T., Christensen, B.C., Gladyshev, V.N., Heijmans, B.T., Horvath, S., et al. (2019). DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249.   DOI
14 Kim, M. and Costello, J. (2017). DNA methylation: an epigenetic mark of cellular memory. Exp. Mol. Med. 49, e322.   DOI
15 Li, W., Liu, H., Cheng, Z.J., Su, Y.H., Han, H.N., Zhang, Y., and Zhang, X.S. (2011). DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet. 7, e1002243.   DOI
16 Dona, F. and Houseley, J. (2014). Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A. PLoS One 9, e115008.   DOI
17 Kim, M.J., Lee, H.J., Choi, M.Y., Kang, S.S., Kim, Y.S., Shin, J.K., and Choi, W.S. (2021). UHRF1 induces methylation of the TXNIP promoter and down-regulates gene expression in cervical cancer. Mol. Cells 44, 146-159.   DOI
18 Ibarra, C.A., Feng, X., Schoft, V.K., Hsieh, T.F., Uzawa, R., Rodrigues, J.A., Zemach, A., Chumak, N., Machlicova, A., Nishimura, T., et al. (2012). Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360-1364.   DOI
19 Karemaker, I.D. and Vermeulen, M. (2018). Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36, 952-965.   DOI
20 Kawakatsu, T., Nery, J.R., Castanon, R., and Ecker, J.R. (2017). Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18, 171.   DOI
21 Krueger, F., Kreck, B., Franke, A., and Andrews, S.R. (2012). DNA methylome analysis using short bisulfite sequencing data. Nat. Methods 9, 145-151.   DOI
22 Laux, T., Wurschum, T., and Breuninger, H. (2004). Genetic regulation of embryonic pattern formation. Plant Cell 16 Suppl, S190-S202.   DOI
23 Levenson, V.V. (2010). DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn. 10, 481-488.   DOI
24 Lin, J.Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.F., Chen, P.Y., Pelletier, J.M., Pellegrini, M., Fischer, R.L., et al. (2017). Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl. Acad. Sci. U. S. A. 114, E9730-E9739.   DOI
25 Picard, C.L. and Gehring, M. (2017). Proximal methylation features associated with nonrandom changes in gene body methylation. Genome Biol. 18, 73.   DOI
26 Luo, C., Rivkin, A., Zhou, J., Sandoval, J.P., Kurihara, L., Lucero, J., Castanon, R., Nery, J.R., Pinto-Duarte, A., Bui, B., et al. (2018). Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9, 3824.   DOI
27 Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., and Zilberman, D. (2009). Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451-1454.   DOI
28 Papareddy, R.K., Paldi, K., Paulraj, S., Kao, P., Lutzmayer, S., and Nodine, M.D. (2020). Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol. 21, 251.   DOI
29 Park, K., Frost, J.M., Adair, A.J., Kim, D.M., Yun, H., Brooks, J.S., Fischer, R.L., and Choi, Y. (2016). Optimized methods for the isolation of Arabidopsis female central cells and their nuclei. Mol. Cells 39, 768-775.   DOI
30 Parry, A., Rulands, S., and Reik, W. (2021). Active turnover of DNA methylation during cell fate decisions. Nat. Rev. Genet. 22, 59-66.   DOI
31 Raissig, M.T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., and Baroux, C. (2013). Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J. Vis. Exp. (76), 50371.
32 Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S.R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817-820.   DOI
33 Rich-Griffin, C., Stechemesser, A., Finch, J., Lucas, E., Ott, S., and Schafer, P. (2020). Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci. 25, 186-197.   DOI
34 Roadmap Epigenomics Consortium, Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330.   DOI
35 Miura, F. and Ito, T. (2015). Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res. 22, 13-18.   DOI
36 Stuart, T. and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272.   DOI