FXRα Down-Regulates LXRα Signaling at the CETP Promoter via a Common Element

  • Park, Sung-Soo (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Choi, Hojung (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Kim, Seung-Jin (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Kim, Ok Jin (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Chae, Kwon-Seok (Department of Biology Education, Teachers' College, Kyungpook National University) ;
  • Kim, Eungseok (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • Received : 2008.05.22
  • Accepted : 2008.06.12
  • Published : 2008.10.31

Abstract

The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor ${\alpha}$ ($FXR{\alpha}$; NR1H4) down-regulates CETP expression in HepG2 cells. A $FXR{\alpha}$ ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that $FXR{\alpha}$ could bind to the liver X receptor ${\alpha}$ ( $LXR{\alpha}$; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. $FXR{\alpha}$ suppressed $LXR{\alpha}$-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between $FXR{\alpha}$ and $LXR{\alpha}$ for DR4RE. Furthermore, the addition of CDCA together with a $LXR{\alpha}$ ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that $FXR{\alpha}$ down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this $FXR{\alpha}$ binding is essential for $FXR{\alpha}$ inhibition of $LXR{\alpha}$-induced CETP expression.

Keywords

Acknowledgement

Supported by : Chonnam National University

References

  1. Agerholm-Larsen, B., Nordestgaard, B.G., Steffensen, R., Jensen, G., and Tybjaerg-Hansen, A. (2000). Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation 101, 1907-1912 https://doi.org/10.1161/01.CIR.101.16.1907
  2. Barzilai, N., Atzmon, G., Schechter, C., Schaefer, E.J., Cupples, A.L., Lipton, R., Cheng, S., and Shuldiner, A.R. (2003). Unique lipoprotein phenotype and genotype associated with exceptional longevity. Jama 290, 2030-2040 https://doi.org/10.1001/jama.290.15.2030
  3. Blankenberg, S., Rupprecht, H.J., Bickel, C., Jiang, X.C., Poirier, O., Lackner, K.J., Meyer, J., Cambien, F., and Tiret, L. (2003). Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease. J. Am. Coll. Cardiol. 41, 1983-1989 https://doi.org/10.1016/S0735-1097(03)00408-X
  4. Claudel, T., Sturm, E., Duez, H., Torra, I.P., Sirvent, A., Kosykh, V., Fruchart, J.C., Dallongeville, J., Hum, D.W., Kuipers, F., et al. (2002). Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J. Clin. Invest. 109, 961-971 https://doi.org/10.1172/JCI0214505
  5. Claudel, T., Inoue, Y., Barbier, O., Duran-Sandoval, D., Kosykh, V., Fruchart, J., Fruchart, J.C., Gonzalez, F.J., and Staels, B. (2003). Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125, 544-555 https://doi.org/10.1016/S0016-5085(03)00896-5
  6. de Grooth, G.J., Zerba, K.E., Huang, S.P., Tsuchihashi, Z., Kirchgessner, T., Belder, R., Vishnupad, P., Hu, B., Klerkx, A.H., Zwinderman, A.H., et al. (2004). The cholesteryl ester transfer protein (CETP) TaqIB polymorphism in the cholesterol and recurrent events study: no interaction with the response to pravastatin therapy and no effects on cardiovascular outcome: a prospective analysis of the CETP TaqIB polymorphism on cardiovascular out come and interaction with cholesterol-lowering therapy. J. Am. Coll. Cardiol. 43, 854-857 https://doi.org/10.1016/j.jacc.2003.08.056
  7. del Castillo-Olivares, A., and Gil, G. (2000). Role of FXR and FTF in bile acid-mediated suppression of cholesterol 7alpha-hydro-xylase transcription. Nucleic Acids Res. 28, 3587-3593 https://doi.org/10.1093/nar/28.18.3587
  8. Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., et al. (1995). Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687-693 https://doi.org/10.1016/0092-8674(95)90530-8
  9. Giguere, V. (1999). Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689-725 https://doi.org/10.1210/er.20.5.689
  10. Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., Galardi, C., Wilson, J.G., Lewis, M.C., Roth, M.E., et al. (2000). A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517-526 https://doi.org/10.1016/S1097-2765(00)00051-4
  11. Hanniman, E.A., Lambert, G., McCarthy, T.C., and Sinal, C.J. (2005). Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46, 2595- 2604 https://doi.org/10.1194/jlr.M500390-JLR200
  12. Kim, E., Xie, S., Yeh, S.D., Lee, Y.F., Collins, L.L., Hu, Y.C., Shyr, C.R., Mu, X.M., Liu, N.C., Chen, Y.T., et al. (2003). Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem. 278, 46919-46926 https://doi.org/10.1074/jbc.M304088200
  13. Kim, E., Yang, Z., Liu, N.C., and Chang, C. (2005). Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5' proximal promoter region. Biochem. Biophys. Res. Commun. 328, 85-90 https://doi.org/10.1016/j.bbrc.2004.12.146
  14. Laffitte, B.A., Kast, H.R., Nguyen, C.M., Zavacki, A.M., Moore, D.D., and Edwards, P.A. (2000). Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J. Biol. Chem. 275, 10638-10647 https://doi.org/10.1074/jbc.275.14.10638
  15. Lambert, G., Amar, M.J., Guo, G., Brewer, H.B. Jr., Gonzalez, F.J., and Sinal, C.J. (2003). The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563-2570 https://doi.org/10.1074/jbc.M209525200
  16. Lu, T.T., Makishima, M., Repa, J.J., Schoonjans, K., Kerr, T.A., Auwerx, J., and Mangelsdorf, D.J. (2000). Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. 6, 507-515 https://doi.org/10.1016/S1097-2765(00)00050-2
  17. Luo, Y., and Tall, A.R. (2000). Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J. Clin. Invest. 105, 513-520 https://doi.org/10.1172/JCI8573
  18. Luo, Y., Liang, C.P., and Tall, A.R. (2001). The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver $\times$ receptor. J. Biol. Chem. 276, 24767-24773 https://doi.org/10.1074/jbc.M100912200
  19. Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999). Identification of a nuclear receptor for bile acids. Science 284, 1362-1365 https://doi.org/10.1126/science.284.5418.1362
  20. Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., et al. (1999). Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365-1368 https://doi.org/10.1126/science.284.5418.1365
  21. Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G., and Gonzalez, F.J. (2000). Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731- 744 https://doi.org/10.1016/S0092-8674(00)00062-3
  22. Sperker, B., Mark, M., and Budzinski, R.M. (1993). The expression of human plasma cholesteryl-ester-transfer protein in HepG2 cells is induced by sodium butyrate. Quantification of low mRNA levels by polymerase chain reaction. Eur. J. Biochem. 218, 945-950 https://doi.org/10.1111/j.1432-1033.1993.tb18451.x
  23. Watanabe, M., Houten, S.M., Wang, L., Moschetta, A., Mangelsdorf, D.J., Heyman, R.A., Moore, D.D., and Auwerx, J. (2004). Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408-1418 https://doi.org/10.1172/JCI21025
  24. Willy, P.J., Umesono, K., Ong, E.S., Evans, R.M., Heyman, R.A., and Mangelsdorf, D.J. (1995). LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9, 1033-1045 https://doi.org/10.1101/gad.9.9.1033
  25. Zhang, Y., Wang, X., Vales, C., Lee, F.Y., Lee, H., Lusis, A.J., and Edwards, P.A. (2006). FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler. Thromb. Vasc. Biol. 26, 2316-2321 https://doi.org/10.1161/01.ATV.0000235697.35431.05