• 제목/요약/키워드: biological cells

검색결과 4,903건 처리시간 0.026초

Lin28 and Imp are Required for Stability of Bowl Transcripts in Hub Cells of the Drosophila Testis

  • To, Van;Kim, Hyun Ju;Jang, Wijeong;Sreejith, Perinthottathil;Kim, Changsoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.313-319
    • /
    • 2021
  • Hub cells comprise a niche for germline stem cells and cyst stem cells in the Drosophila testis. Hub cells arise from common somatic gonadal precursors in embryos, but the mechanism of their specification is still poorly understood. Here we find that RNA binding proteins Lin28 and Imp mediate transcript stability of Bowl, a known hub specification factor; Bowl transcripts were reduced in the testis of Lin28 and Imp mutants, and also when RNA-mediated interference against Lin28 or Imp was expressed in hub cells. In tissue culture Luciferase assays involving the Bowl 3'UTR, stability of Luc reporter transcripts depended on the Bowl 3'UTR and required Lin28 and Imp. Our findings suggest that proper Bowl function during hub cell specification requires Lin28 and Imp in the testis hub cells.

Ependymal Cells Require Anks1a for Their Proper Development

  • Park, Sunjung;Lee, Haeryung;Lee, Jiyeon;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.245-251
    • /
    • 2019
  • Ependymal cells constitute the multi-ciliated epithelium, which lines the brain ventricular lumen. Although ependymal cells originate from radial glial cells in the perinatal rodent brain, the exact mechanisms underlying the full differentiation of ependymal cells are poorly understood. In this report, we present evidence that the Anks1a phosphotyrosine binding domain (PTB) adaptor is required for the proper development of ependymal cells in the rodent postnatal brain. Anks1a gene trap targeted LacZ reporter analysis revealed that Anks1a is expressed prominently in the ventricular region of the early postnatal brain and that its expression is restricted to mature ependymal cells during postnatal brain development. In addition, Anks1a-deficient ependymal cells were shown to possess type B cell characteristics, suggesting that ependymal cells require Anks1a in order to be fully differentiated. Finally, Anks1a overexpression in the lateral wall of the neonatal brain resulted in an increase in the number of ependymal cells during postnatal brain development. Altogether, our results suggest that ependymal cells require Anks1a PTB adaptor for their proper development.

IL-18 gene expression pattern in exogenously treated AML cells

  • Seo, Min-Ji;Park, Min-Ha;Yook, Yeon-Joo;Kwon, Young-Sook;Suh, Young-Ju;Kim, Min-Jung;Cho, Dae-Ho;Park, Jong-Hoon
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.461-465
    • /
    • 2008
  • IL-18 production may enhance immune system defense against KG-1 cells ; NB4 cells, which are associated with good prognosis, do not produce IL-18. In this study, we treated KG-1 cells with IL-18 and used microarray technology to assess subsequent effects on gene expression. In UniGene-array of 7488 human genes, expression of 57 genes, including stress related genes, increased at least 2-fold, whereas expression of 48 genes decreased at least 2-fold. Following exogenous exposure of KG-1 cells to IL-18, expression of CRYGC, $NF{\kappa}BIA$ and NACA gene were monitored. The latter is a transcriptional coactivator potentiating c-Jun-mediated transcription.$NF{\kappa}BIA$ is an inhibitor of $NF{\kappa}B$, and affects growth regulation, apoptosis and hypoxic stress. Studies, such as this one, are beginning to clarify the differences between cells associated with good and bad cancer prognoses, which may ultimately assist in medical treatment for acute myeloid leukemia.

DRG2 Deficiency Causes Impaired Microtubule Dynamics in HeLa Cells

  • Dang, Thao;Jang, Soo Hwa;Back, Sung Hoon;Park, Jeong Woo;Han, In-Seob
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1045-1051
    • /
    • 2018
  • The developmentally regulated GTP binding protein 2 (DRG2) is involved in the control of cell growth and differentiation. Here, we demonstrate that DRG2 regulates microtubule dynamics in HeLa cells. Analysis of live imaging of the plus-ends of microtubules with EB1-EGFP showed that DRG2 deficiency (shDRG2) significantly reduced the growth rate of HeLa cells. Depletion of DRG2 increased 'slow and long-lived' subpopulations, but decreased 'fast and short-lived' subpopulations of microtubules. Microtubule polymerization inhibitor exhibited a reduced response in shDRG2 cells. Using immunoprecipitation, we show that DRG2 interacts with tau, which regulates microtubule polymerization. Collectively, these data demonstrate that DRG2 may aid in affecting microtubule dynamics in HeLa cells.

Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

  • Jeong, Ae-Jin;Chung, Chung-Nam;Kim, Hye-Jin;Bae, Kil-Soo;Choi, Song;Jun, Woo-Jin;Shim, Sang-In;Kang, Tae-Hong;Leem, Sun-Hee;Chung, Jin-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.361-365
    • /
    • 2012
  • Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway.

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim;Su Hui Seong;Tae-Su Kim;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jung Up Park;Kyung-Min Choi;Jin-Woo Jeong
    • 한국자원식물학회지
    • /
    • 제36권3호
    • /
    • pp.207-218
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

Survival of Bifidobacterium breve in Acidic Solutions and Yogurt, Following Immobilization in Calcium Alginate Beads

  • Lee, Ki-Yong;Kim, Ji-Youn;Yu, Won-Kyu;Lee, Yoon-Jong;Yoon, Sung-Sik;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.412-417
    • /
    • 2001
  • Sodium alginate was used to immobilize Bifidobacterium breve ATCC 15700 cells. The ability of the Ca-alginate beads to protect the B. breve ATCC 15700 was evaluated under different conditions including alginate concentration, bead size, pH, hydrogen peroxide, and storage period. The survival of the B. Breve ATCC 15700 was estimated in pasteurized yogurt, containing either the immobilized or free cells, throughout the storage period. The survival cells in bead after exposure to acidic solution (pH 3.0) increased with increase of both the alginate gel concentration and bead size. Also, immobilized cells in alginate bead were more resistant than the free cells to hydrogen peroxide, storage period, and the environment inside yogur. When retreated beads with skim milk and nonretreated beads were tested in acidified pH 3.0 TPY media including acetic and lactic acid, the number of viable cells in the retreated bead was approximately 10-fold higher than that of nonretreated beads. This suggests that the skim milk operated as a material decreasing the diffusion of acid and hydrogen perosicde into alginate gels. From this research, it was found that yogurt itself supported immobilized cells with an improved protection from the extreme acidity in yogurt.

  • PDF

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

  • Jeon, Yong-Joon;Kim, Jin Hyun;Shin, Jong-Il;Jeong, Mini;Cho, Jaewook;Lee, Kyungho
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.129-135
    • /
    • 2016
  • Eukaryotic translation initiation factor 2 alpha ($eIF2{\alpha}$), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of $eIF2{\alpha}$ phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of $eIF2{\alpha}$ in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of $eIF2{\alpha}$, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of $eIF2{\alpha}$ phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of $eIF2{\alpha}$ by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

Genome editing of immune cells using CRISPR/Cas9

  • Kim, Segi;Hupperetz, Cedric;Lim, Seongjoon;Kim, Chan Hyuk
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.59-69
    • /
    • 2021
  • The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.