Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2243

Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells  

Jeon, Yong-Joon (Department of Biological Sciences, Konkuk University)
Kim, Jin Hyun (Department of Biological Sciences, Konkuk University)
Shin, Jong-Il (Department of Biological Sciences, Konkuk University)
Jeong, Mini (Department of Biological Sciences, Konkuk University)
Cho, Jaewook (Department of Biological Sciences, Konkuk University)
Lee, Kyungho (Department of Biological Sciences, Konkuk University)
Abstract
Eukaryotic translation initiation factor 2 alpha ($eIF2{\alpha}$), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of $eIF2{\alpha}$ phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of $eIF2{\alpha}$ in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of $eIF2{\alpha}$, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of $eIF2{\alpha}$ phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of $eIF2{\alpha}$ by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.
Keywords
$eIF2{\alpha}$ phosphorylation; ER stress; GADD34; MCF-7/ADR cells; doxorubicin resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Armstrong, J.L., Flockhart, R., Veal, G.J., Lovat, P.E., and Redfern, C.P. (2010). Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J. Biol. Chem. 285, 6091-6100.   DOI
2 Azmi, A.S., Wang, Z., Philip, P.A., Mohammad, R.M., and Sarkar, F.H. (2011). Emerging Bcl-2 inhibitors for the treatment of cancer. Exp. Opin. Emerg. Drugs 16, 59-70.   DOI
3 Bennett, R.L., Carruthers, A.L., Hui, T., Kerney, K.R., Liu, X., and May, W.S., Jr. (2012). Increased expression of the dsRNA-activated protein kinase PKR in breast cancer promotes sensitivity to doxorubicin. PLoS One 7, e46040.   DOI
4 Gottesman, M.M., Fojo, T., and Bates, S.E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48-58.   DOI
5 Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481-490.   DOI
6 Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
7 Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., and Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845.
8 Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89-102.   DOI
9 Hiramatsu, N., Messah, C., Han, J., LaVail, M.M., Kaufman, R.J., and Lin, J.H. (2014). Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stressinduced cell death during the unfolded protein response. Mol. Biol. Cell. 25, 1411-1420.   DOI
10 Hollander, M.C., Zhan, Q., Bae, I., and Fornace, A.J., Jr. (1997). Mammalian GADD34, an apoptosis- and DNA damageinducible gene. J. Biol. Chem. 272, 13731-13737.   DOI
11 Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G. (2013). Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714-726.   DOI
12 Hyrskyluoto, A., Reijonen, S., Kivinen, J., Lindholm, D., and Korhonen, L. (2012). GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp. Cell Res. 318, 33-42.   DOI
13 Minko, T., Batrakova, E.V., Li, S., Li, Y., Pakunlu, R.I., Alakhov, V.Y., and Kabanov, A.V. (2005). Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J. Control Release. 105, 269-278.   DOI
14 Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185-229.   DOI
15 Morrow, K., Hernandez, C.P., Raber, P., Del Valle, L., Wilk, A.M., Majumdar, S., Wyczechowska, D., Reiss, K., and Rodriguez, P.C. (2013). Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia 27, 569-577.   DOI
16 Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022.   DOI
17 Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G.M., Apetoh, L., Perfettini, J.L., Castedo, M., Mignot, G., Panaretakis, T., Casares, N., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54-61.   DOI
18 Ogretmen, B., and Safa, A.R. (1996). Down-regulation of apoptosisrelated bcl-2 but not bcl-xL or bax proteins in multidrug-resistant MCF-7/Adr human breast cancer cells. Int. J. Cancer 67, 608- 614.   DOI
19 Peidis, P., Papadakis, A.I., Muaddi, H., Richard, S., and Koromilas, A.E. (2011). Doxorubicin bypasses the cytoprotective effects of eIF2alpha phosphorylation and promotes PKR-mediated cell death. Cell Death Differ. 18, 145-154.   DOI
20 Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935-939.   DOI
21 Calcabrini, A., Garcia-Martinez, J.M., Gonzalez, L., Tendero, M.J., Ortuno, M.T., Crateri, P., Lopez-Rivas, A., Arancia, G., Gonzalez- Porque, P., and Martin-Perez, J. (2006). Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis 27, 1699-1712.
22 Chung, S.Y., Sung, M.K., Kim, N.H., Jang, J.O., Go, E.J., and Lee, H.J. (2005). Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 28, 823-828.   DOI
23 Cowan, K.H., Batist, G., Tulpule, A., Sinha, B.K., and Myers, C.E. (1986). Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc. Natl. Acad. Sci. USA 83, 9328-9332.   DOI
24 Fairchild, C.R., Ivy, S.P., Kao-Shan, C.S., Whang-Peng, J., Rosen, N., Israel, M.A., Melera, P.W., Cowan, K.H., and Goldsmith, M.E. (1987). Isolation of amplified and overexpressed DNA sequences from adriamycin-resistant human breast cancer cells. Cancer Res. 47, 5141-5148.
25 Farook, J.M., Shields, J., Tawfik, A., Markand, S., Sen, T., Smith, S.B., Brann, D., Dhandapani, K.M., and Sen, N. (2013). GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Disease 4, e754.   DOI
26 Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-741.   DOI
27 Jeong, M., Cho, J., Cho, W., Shin, G., and Lee, K. (2009). The glucosamine-mediated induction of CHOP reduces the expression of inflammatory cytokines by modulating JNK and NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. Genes Genomics 31, 251-260.   DOI
28 Jeong, M., Cho, J., Shin, J.I., Jeon, Y.J., Kim, J.H., Lee, S.J., Kim, E.S., and Lee, K. (2014). Hempseed oil induces reactive oxygen species- and C/EBP homologous protein-mediated apoptosis in MH7A human rheumatoid arthritis fibroblast-like synovial cells. J. Ethnopharmacol. 154, 745-752.   DOI
29 Jiang, C.C., Yang, F., Thorne, R.F., Zhu, B.K., Hersey, P., and Zhang, X.D. (2009). Human melanoma cells under endoplasmic reticulum stress acquire resistance to microtubule-targeting drugs through XBP-1-mediated activation of Akt. Neoplasia 11, 436-447.   DOI
30 Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H.P., and Ron, D. (2003). Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767-775.   DOI
31 Kusio-Kobialka, M., Podszywalow-Bartnicka, P., Peidis, P., Glodkowska-Mrowka, E., Wolanin, K., Leszak, G., Seferynska, I., Stoklosa, T., Koromilas, A.E., and Piwocka, K. (2012). The PERK-eIF2 alpha phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle 11, 4069- 4078.   DOI
32 Lee, E., Nichols, P., Spicer, D., Groshen, S., Yu, M.C., and Lee, A.S. (2006). GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66, 7849-7853.   DOI
33 Leung, L.K., and Wang, T.T. (1999). Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Breast Cancer Res. Treat. 55, 73-83.   DOI
34 Puthalakath, H., O'Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm- Breschkin, J., Motoyama, N., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129, 1337- 1349.   DOI
35 Ranganathan, A.C., Zhang, L., Adam, A.P., and Aguirre-Ghiso, J.A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702-1711.   DOI
36 Reed, J.C., Kitada, S., Takayama, S., and Miyashita, T. (1994). Regulation of chemoresistance by the bcl-2 oncoprotein in non- Hodgkin's lymphoma and lymphocytic leukemia cell lines. Ann. Oncol. 5 Suppl 1, 61-65.
37 Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401-410.
38 Schewe, D.M., and Aguirre-Ghiso, J.A. (2009). Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res. 69, 1545-1552.   DOI
39 Sedlak, T.W., Oltvai, Z.N., Yang, E., Wang, K., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA 92, 7834-7838.   DOI
40 Silke, J., and Vucic, D. (2014). IAP family of cell death and signaling regulators. Methods Enzymol. 545, 35-65.   DOI
41 Tsou, S.H., Chen, T.M., Hsiao, H.T., and Chen, Y.H. (2015). A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 10, e0116747.   DOI
42 Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783-792.   DOI
43 Lu, M., Lawrence, D.A., Marsters, S., Acosta-Alvear, D., Kimmig, P., Mendez, A.S., Paton, A.W., Paton, J.C., Walter, P., and Ashkenazi, A. (2014). Cell death. Opposing unfolded-proteinresponse signals converge on death receptor 5 to control apoptosis. Science 345, 98-101.   DOI
44 Malhotra, J.D., and Kaufman, R.J. (2007). The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716-731.   DOI
45 McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W.T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 1773, 1263-1284.   DOI
46 McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249-1259.   DOI
47 Mehta, K., Devarajan, E., Chen, J., Multani, A., and Pathak, S. (2002). Multidrug-resistant MCF-7 cells: an identity crisis? J. Natl. Cancer Inst. 94, 1652-1654; author reply 1654.   DOI
48 Minderman, H., O'Loughlin, K.L., Pendyala, L., and Baer, M.R. (2004). VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing Pglycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin. Cancer Res. 10, 1826-1834.   DOI
49 Tsuruo, T., Naito, M., Tomida, A., Fujita, N., Mashima, T., Sakamoto, H., and Haga, N. (2003). Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 94, 15-21.   DOI
50 Wang, S.Y., and Kaufman, R.J. (2012). The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857-867.   DOI
51 Wang, M., and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581-597.   DOI
52 Wang, N., Li, Z., Tian, F., Feng, Y., Huang, J., Li, C., and Xie, F. (2012). PKCalpha inhibited apoptosis by decreasing the activity of JNK in MCF-7/ADR cells. Exp. Toxicol. Pathol. 64, 459-464.   DOI
53 Watanabe, R., Tambe, Y., Inoue, H., Isono, T., Haneda, M., Isobe, K., Kobayashi, T., Hino, O., Okabe, H., and Chano, T. (2007). GADD34 inhibits mammalian target of rapamycin signaling via tuberous sclerosis complex and controls cell survival under bioenergetic stress. Int. J. Mol. Med. 19, 475-483.
54 Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11.   DOI