DOI QR코드

DOI QR Code

Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

  • Jeon, Yong-Joon (Department of Biological Sciences, Konkuk University) ;
  • Kim, Jin Hyun (Department of Biological Sciences, Konkuk University) ;
  • Shin, Jong-Il (Department of Biological Sciences, Konkuk University) ;
  • Jeong, Mini (Department of Biological Sciences, Konkuk University) ;
  • Cho, Jaewook (Department of Biological Sciences, Konkuk University) ;
  • Lee, Kyungho (Department of Biological Sciences, Konkuk University)
  • Received : 2015.09.15
  • Accepted : 2015.10.16
  • Published : 2016.02.29

Abstract

Eukaryotic translation initiation factor 2 alpha ($eIF2{\alpha}$), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of $eIF2{\alpha}$ phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of $eIF2{\alpha}$ in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of $eIF2{\alpha}$, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of $eIF2{\alpha}$ phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of $eIF2{\alpha}$ by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

Keywords

References

  1. Armstrong, J.L., Flockhart, R., Veal, G.J., Lovat, P.E., and Redfern, C.P. (2010). Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J. Biol. Chem. 285, 6091-6100. https://doi.org/10.1074/jbc.M109.014092
  2. Azmi, A.S., Wang, Z., Philip, P.A., Mohammad, R.M., and Sarkar, F.H. (2011). Emerging Bcl-2 inhibitors for the treatment of cancer. Exp. Opin. Emerg. Drugs 16, 59-70. https://doi.org/10.1517/14728214.2010.515210
  3. Bennett, R.L., Carruthers, A.L., Hui, T., Kerney, K.R., Liu, X., and May, W.S., Jr. (2012). Increased expression of the dsRNA-activated protein kinase PKR in breast cancer promotes sensitivity to doxorubicin. PLoS One 7, e46040. https://doi.org/10.1371/journal.pone.0046040
  4. Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935-939. https://doi.org/10.1126/science.1101902
  5. Calcabrini, A., Garcia-Martinez, J.M., Gonzalez, L., Tendero, M.J., Ortuno, M.T., Crateri, P., Lopez-Rivas, A., Arancia, G., Gonzalez- Porque, P., and Martin-Perez, J. (2006). Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis 27, 1699-1712.
  6. Chung, S.Y., Sung, M.K., Kim, N.H., Jang, J.O., Go, E.J., and Lee, H.J. (2005). Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 28, 823-828. https://doi.org/10.1007/BF02977349
  7. Cowan, K.H., Batist, G., Tulpule, A., Sinha, B.K., and Myers, C.E. (1986). Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc. Natl. Acad. Sci. USA 83, 9328-9332. https://doi.org/10.1073/pnas.83.24.9328
  8. Fairchild, C.R., Ivy, S.P., Kao-Shan, C.S., Whang-Peng, J., Rosen, N., Israel, M.A., Melera, P.W., Cowan, K.H., and Goldsmith, M.E. (1987). Isolation of amplified and overexpressed DNA sequences from adriamycin-resistant human breast cancer cells. Cancer Res. 47, 5141-5148.
  9. Farook, J.M., Shields, J., Tawfik, A., Markand, S., Sen, T., Smith, S.B., Brann, D., Dhandapani, K.M., and Sen, N. (2013). GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Disease 4, e754. https://doi.org/10.1038/cddis.2013.280
  10. Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-741. https://doi.org/10.1016/S0006-2952(98)00307-4
  11. Gottesman, M.M., Fojo, T., and Bates, S.E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48-58. https://doi.org/10.1038/nrc706
  12. Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481-490. https://doi.org/10.1038/ncb2738
  13. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  14. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., and Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845.
  15. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89-102. https://doi.org/10.1038/nrm3270
  16. Hiramatsu, N., Messah, C., Han, J., LaVail, M.M., Kaufman, R.J., and Lin, J.H. (2014). Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stressinduced cell death during the unfolded protein response. Mol. Biol. Cell. 25, 1411-1420. https://doi.org/10.1091/mbc.E13-11-0664
  17. Hollander, M.C., Zhan, Q., Bae, I., and Fornace, A.J., Jr. (1997). Mammalian GADD34, an apoptosis- and DNA damageinducible gene. J. Biol. Chem. 272, 13731-13737. https://doi.org/10.1074/jbc.272.21.13731
  18. Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G. (2013). Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714-726. https://doi.org/10.1038/nrc3599
  19. Hyrskyluoto, A., Reijonen, S., Kivinen, J., Lindholm, D., and Korhonen, L. (2012). GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp. Cell Res. 318, 33-42. https://doi.org/10.1016/j.yexcr.2011.08.020
  20. Jeong, M., Cho, J., Cho, W., Shin, G., and Lee, K. (2009). The glucosamine-mediated induction of CHOP reduces the expression of inflammatory cytokines by modulating JNK and NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. Genes Genomics 31, 251-260. https://doi.org/10.1007/BF03191197
  21. Jeong, M., Cho, J., Shin, J.I., Jeon, Y.J., Kim, J.H., Lee, S.J., Kim, E.S., and Lee, K. (2014). Hempseed oil induces reactive oxygen species- and C/EBP homologous protein-mediated apoptosis in MH7A human rheumatoid arthritis fibroblast-like synovial cells. J. Ethnopharmacol. 154, 745-752. https://doi.org/10.1016/j.jep.2014.04.052
  22. Jiang, C.C., Yang, F., Thorne, R.F., Zhu, B.K., Hersey, P., and Zhang, X.D. (2009). Human melanoma cells under endoplasmic reticulum stress acquire resistance to microtubule-targeting drugs through XBP-1-mediated activation of Akt. Neoplasia 11, 436-447. https://doi.org/10.1593/neo.09208
  23. Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H.P., and Ron, D. (2003). Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767-775. https://doi.org/10.1083/jcb.200308075
  24. Kusio-Kobialka, M., Podszywalow-Bartnicka, P., Peidis, P., Glodkowska-Mrowka, E., Wolanin, K., Leszak, G., Seferynska, I., Stoklosa, T., Koromilas, A.E., and Piwocka, K. (2012). The PERK-eIF2 alpha phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle 11, 4069- 4078. https://doi.org/10.4161/cc.22387
  25. Lee, E., Nichols, P., Spicer, D., Groshen, S., Yu, M.C., and Lee, A.S. (2006). GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66, 7849-7853. https://doi.org/10.1158/0008-5472.CAN-06-1660
  26. Leung, L.K., and Wang, T.T. (1999). Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Breast Cancer Res. Treat. 55, 73-83. https://doi.org/10.1023/A:1006190802590
  27. Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783-792. https://doi.org/10.1083/jcb.200904060
  28. Lu, M., Lawrence, D.A., Marsters, S., Acosta-Alvear, D., Kimmig, P., Mendez, A.S., Paton, A.W., Paton, J.C., Walter, P., and Ashkenazi, A. (2014). Cell death. Opposing unfolded-proteinresponse signals converge on death receptor 5 to control apoptosis. Science 345, 98-101. https://doi.org/10.1126/science.1254312
  29. Malhotra, J.D., and Kaufman, R.J. (2007). The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716-731. https://doi.org/10.1016/j.semcdb.2007.09.003
  30. McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W.T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 1773, 1263-1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
  31. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249-1259. https://doi.org/10.1128/MCB.21.4.1249-1259.2001
  32. Mehta, K., Devarajan, E., Chen, J., Multani, A., and Pathak, S. (2002). Multidrug-resistant MCF-7 cells: an identity crisis? J. Natl. Cancer Inst. 94, 1652-1654; author reply 1654. https://doi.org/10.1093/jnci/94.21.1652
  33. Minderman, H., O'Loughlin, K.L., Pendyala, L., and Baer, M.R. (2004). VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing Pglycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin. Cancer Res. 10, 1826-1834. https://doi.org/10.1158/1078-0432.CCR-0914-3
  34. Minko, T., Batrakova, E.V., Li, S., Li, Y., Pakunlu, R.I., Alakhov, V.Y., and Kabanov, A.V. (2005). Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J. Control Release. 105, 269-278. https://doi.org/10.1016/j.jconrel.2005.03.019
  35. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185-229. https://doi.org/10.1124/pr.56.2.6
  36. Morrow, K., Hernandez, C.P., Raber, P., Del Valle, L., Wilk, A.M., Majumdar, S., Wyczechowska, D., Reiss, K., and Rodriguez, P.C. (2013). Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia 27, 569-577. https://doi.org/10.1038/leu.2012.247
  37. Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022. https://doi.org/10.1083/jcb.153.5.1011
  38. Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G.M., Apetoh, L., Perfettini, J.L., Castedo, M., Mignot, G., Panaretakis, T., Casares, N., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54-61. https://doi.org/10.1038/nm1523
  39. Ogretmen, B., and Safa, A.R. (1996). Down-regulation of apoptosisrelated bcl-2 but not bcl-xL or bax proteins in multidrug-resistant MCF-7/Adr human breast cancer cells. Int. J. Cancer 67, 608- 614. https://doi.org/10.1002/(SICI)1097-0215(19960904)67:5<608::AID-IJC3>3.0.CO;2-Y
  40. Peidis, P., Papadakis, A.I., Muaddi, H., Richard, S., and Koromilas, A.E. (2011). Doxorubicin bypasses the cytoprotective effects of eIF2alpha phosphorylation and promotes PKR-mediated cell death. Cell Death Differ. 18, 145-154. https://doi.org/10.1038/cdd.2010.76
  41. Puthalakath, H., O'Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm- Breschkin, J., Motoyama, N., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129, 1337- 1349. https://doi.org/10.1016/j.cell.2007.04.027
  42. Ranganathan, A.C., Zhang, L., Adam, A.P., and Aguirre-Ghiso, J.A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702-1711. https://doi.org/10.1158/0008-5472.CAN-05-3092
  43. Reed, J.C., Kitada, S., Takayama, S., and Miyashita, T. (1994). Regulation of chemoresistance by the bcl-2 oncoprotein in non- Hodgkin's lymphoma and lymphocytic leukemia cell lines. Ann. Oncol. 5 Suppl 1, 61-65.
  44. Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401-410.
  45. Schewe, D.M., and Aguirre-Ghiso, J.A. (2009). Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res. 69, 1545-1552. https://doi.org/10.1158/0008-5472.CAN-08-3858
  46. Sedlak, T.W., Oltvai, Z.N., Yang, E., Wang, K., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA 92, 7834-7838. https://doi.org/10.1073/pnas.92.17.7834
  47. Silke, J., and Vucic, D. (2014). IAP family of cell death and signaling regulators. Methods Enzymol. 545, 35-65. https://doi.org/10.1016/B978-0-12-801430-1.00002-0
  48. Tsou, S.H., Chen, T.M., Hsiao, H.T., and Chen, Y.H. (2015). A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 10, e0116747. https://doi.org/10.1371/journal.pone.0116747
  49. Tsuruo, T., Naito, M., Tomida, A., Fujita, N., Mashima, T., Sakamoto, H., and Haga, N. (2003). Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 94, 15-21. https://doi.org/10.1111/j.1349-7006.2003.tb01345.x
  50. Wang, S.Y., and Kaufman, R.J. (2012). The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857-867. https://doi.org/10.1083/jcb.201110131
  51. Wang, M., and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581-597. https://doi.org/10.1038/nrc3800
  52. Wang, N., Li, Z., Tian, F., Feng, Y., Huang, J., Li, C., and Xie, F. (2012). PKCalpha inhibited apoptosis by decreasing the activity of JNK in MCF-7/ADR cells. Exp. Toxicol. Pathol. 64, 459-464. https://doi.org/10.1016/j.etp.2010.10.014
  53. Watanabe, R., Tambe, Y., Inoue, H., Isono, T., Haneda, M., Isobe, K., Kobayashi, T., Hino, O., Okabe, H., and Chano, T. (2007). GADD34 inhibits mammalian target of rapamycin signaling via tuberous sclerosis complex and controls cell survival under bioenergetic stress. Int. J. Mol. Med. 19, 475-483.
  54. Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11. https://doi.org/10.1042/BST0340007

Cited by

  1. Unfolded Protein Response Promotes Doxorubicin-Induced Nonsmall Cell Lung Cancer Cells Apoptosis via the mTOR Pathway Inhibition vol.31, pp.10, 2016, https://doi.org/10.1089/cbr.2016.2079
  2. Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/Adriamycin cells vol.36, pp.2, 2016, https://doi.org/10.3892/or.2016.4892
  3. Translational control and the cancer cell response to stress vol.45, 2017, https://doi.org/10.1016/j.ceb.2017.05.007
  4. Suppression of EIF4G2 by miR-379 potentiates the cisplatin chemosensitivity in nonsmall cell lung cancer cells vol.591, pp.4, 2017, https://doi.org/10.1002/1873-3468.12566
  5. Cyclopamine sensitizes TRAIL-resistant gastric cancer cells to TRAIL-induced apoptosis via endoplasmic reticulum stress-mediated increase of death receptor 5 and survivin degradation vol.89, 2017, https://doi.org/10.1016/j.biocel.2017.06.010
  6. Nakai Has Synergetic Effects on Doxorubicin-Induced Apoptosis vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/6716547
  7. Salubrinal Enhances Doxorubicin Sensitivity in Human Cholangiocarcinoma Cells Through Promoting DNA Damage vol.33, pp.6, 2018, https://doi.org/10.1089/cbr.2018.2447
  8. Regulation of tumor-stroma interactions by the unfolded protein response vol.286, pp.2, 2017, https://doi.org/10.1111/febs.14359
  9. The eIF2-alpha kinase HRI: a potential target beyond the red blood cell vol.21, pp.12, 2016, https://doi.org/10.1080/14728222.2017.1397133
  10. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum vol.6, pp.None, 2016, https://doi.org/10.12688/f1000research.12138.1
  11. Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells vol.20, pp.10, 2016, https://doi.org/10.3390/ijms20102518
  12. Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway vol.11, pp.None, 2016, https://doi.org/10.3389/fonc.2021.654940
  13. The plasticity of mRNA translation during cancer progression and therapy resistance vol.21, pp.9, 2016, https://doi.org/10.1038/s41568-021-00380-y
  14. Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress vol.9, pp.9, 2016, https://doi.org/10.3390/biomedicines9091101