Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.1.245

Genome editing of immune cells using CRISPR/Cas9  

Kim, Segi (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Hupperetz, Cedric (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lim, Seongjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Chan Hyuk (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
BMB Reports / v.54, no.1, 2021 , pp. 59-69 More about this Journal
Abstract
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.
Keywords
CRISPR/Cas9; Engineered T cells; Genome editing; Genome-wide screening; HSPC engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alcantara M, Tesio M, June CH and Houot R (2018) CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 32, 2307-2315   DOI
2 Gomes-Silva D, Srinivasan M, Sharma S et al (2017) CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285-296   DOI
3 Ren J, Liu X, Fang C, Jiang S, June CH and Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23, 2255-2266   DOI
4 Morton LT, Reijmers RM, Wouters AK et al (2020) Simultaneous deletion of endogenous TCRalphabeta for TCR gene therapy creates an improved and safe cellular therapeutic. Mol Ther 28, 64-74   DOI
5 Maher J, Brentjens RJ, Gunset G, Riviere I and Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20, 70-75   DOI
6 Milone MC, Fish JD, Carpenito C et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17, 1453-1464   DOI
7 Uren AG, Kool J, Berns A and van Lohuizen M (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656-7672   DOI
8 Niederer HA and Bangham CR (2014) Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 6, 4140-4164   DOI
9 Woods NB, Muessig A, Schmidt M et al (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101, 1284-1289   DOI
10 Eyquem J, Mansilla-Soto J, Giavridis T et al (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113-117   DOI
11 Rathore A, Iketani S, Wang P, Jia M, Sahi V and Ho DD (2020) CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Sci Rep 10, 5350   DOI
12 Joung J, Konermann S, Gootenberg JS et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12, 828-863   DOI
13 Park RJ, Wang T, Koundakjian D et al (2017) A genomewide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49, 193-203   DOI
14 Ait-Ammar A, Kula A, Darcis G et al (2019) Current status of latency reversing agents facing the heterogeneity of HIV-1 cellular and tissue reservoirs. Front Microbiol 10, 3060   DOI
15 Manganaro L, Pache L, Herrmann T et al (2014) Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-kappaB-dependent manner. J Virol 88, 7528-7540   DOI
16 Tothova Z, Krill-Burger JM, Popova KD et al (2017) Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell 21, 547-555.e8   DOI
17 Wagenblast E, Azkanaz M, Smith SA et al (2019) Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nat Commun 10, 4730   DOI
18 Cavazzana M, Antoniani C and Miccio A (2017) Gene therapy for beta-hemoglobinopathies. Mol Ther 25, 1142-1154   DOI
19 Wu Y, Zeng J, Roscoe BP et al (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25, 776-783   DOI
20 Dever DP, Bak RO, Reinisch A et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539, 384-389   DOI
21 Zeng J, Wu Y, Ren C et al (2020) Therapeutic base editing of human hematopoietic stem cells. Nat Med 26, 535-541   DOI
22 Woods NB, Bottero V, Schmidt M, von Kalle C and Verma IM (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440, 1123   DOI
23 Roth TL, Puig-Saus C, Yu R et al (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405-409   DOI
24 Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15, 840-848   DOI
25 Traxler EA, Yao Y, Wang YD et al (2016) A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 22, 987-990   DOI
26 Weber L, Frati G, Felix T et al (2020) Editing a gammaglobin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv 6, eaay9392   DOI
27 Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118, 3132-3142   DOI
28 Pavel-Dinu M, Wiebking V, Dejene BT et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10, 1634   DOI
29 Holt N, Wang J, Kim K et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28, 839-847   DOI
30 Shi B, Li J, Shi X et al (2017) TALEN-mediated knockout of CCR5 confers protection against infection of human immunodeficiency virus. J Acquir Immune Defic Syndr 74, 229-241   DOI
31 Xu L, Yang H, Gao Y et al (2017) CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 25, 1782-1789   DOI
32 Xu L, Wang J, Liu Y et al (2019) CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 381, 1240-1247   DOI
33 Hartweger H, McGuire AT, Horning M et al (2019) HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. J Exp Med 216, 1301-1310   DOI
34 Roth TL, Li PJ, Blaeschke F et al (2020) Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell 181, 728-744 e721   DOI
35 Klinger M, Benjamin J, Kischel R, Stienen S and Zugmaier G (2016) Harnessing T cells to fight cancer with BiTE(R) antibody constructs--past developments and future directions. Immunol Rev 270, 193-208   DOI
36 Guedan S, Ruella M and June CH (2019) Emerging cellular therapies for cancer. Annu Rev Immunol 37, 145-171   DOI
37 Strecker J, Ladha A, Gardner Z et al (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53   DOI
38 Klompe SE, Vo PLH, Halpin-Healy TS and Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219-225   DOI
39 Pan D, Kobayashi A, Jiang P et al (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770-775   DOI
40 Nguyen DN, Roth TL, Li PJ et al (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol 38, 44-49   DOI
41 Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507   DOI
42 Sander JD and Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355   DOI
43 Blank CU, Haining WN, Held W et al (2019) Defining 'T cell exhaustion'. Nat Rev Immunol 19, 665-674   DOI
44 Schuster SJ, Svoboda J, Chong EA et al (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377, 2545-2554   DOI
45 Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377, 2531-2544   DOI
46 Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378, 439-448   DOI
47 Wherry EJ and Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486-499   DOI
48 Choi BD, Yu X, Castano AP et al (2019) CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7, 304   DOI
49 Hu W, Zi Z, Jin Y et al (2019) CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother 68, 365-377   DOI
50 Rupp LJ, Schumann K, Roybal KT et al (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7, 737   DOI
51 Su S, Hu B, Shao J et al (2016) CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070   DOI
52 Henriksson J (2019) CRISPR screening in single cells. Methods Mol Biol 1979, 395-406   DOI
53 Kadoch C and Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 1, e1500447   DOI
54 Singh N, Lee YG, Shestova O et al (2020) Impaired death receptor signaling in leukemia causes antigen- independent resistance by inducing CAR T-cell dysfunction. Cancer Discov 10, 552-567   DOI
55 Cortez JT, Montauti E, Shifrut E et al (2020) CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416-420   DOI
56 Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201   DOI
57 Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214   DOI
58 Dixit A, Parnas O, Li B et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853-1866. e17   DOI
59 Tong S, Moyo B, Lee CM, Leong K and Bao G (2019) Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater 4, 726-737   DOI
60 Anzalone AV, Koblan LW and Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824-844   DOI
61 Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme convertsion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433   DOI
62 Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575   DOI
63 Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182   DOI
64 Mardis ER (2017) DNA sequencing technologies: 2006-2016. Nat Protoc 12, 213-218   DOI
65 Zhang W, Mitchell LA, Bader JS and Boeke JD (2020) Synthetic genomes. Annu Rev Biochem 89, 77-101   DOI
66 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
67 Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712   DOI
68 Mojica FJM, Diez-Villasenor C, Garcia-Martinez J and Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading) 155, 733-740   DOI
69 Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83   DOI
70 Wang H, La Russa M and Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85, 227-264   DOI
71 Ren J and Zhao Y (2017) Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8, 634-643   DOI
72 Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019   DOI
73 Hendel A, Bak RO, Clark JT et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33, 985-989   DOI
74 McFaline-Figueroa JL, Hill AJ, Qiu X, Jackson D, Shendure J and Trapnell C (2019) A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat Genet 51, 1389-1398   DOI
75 Hornung V and Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10, 123-130   DOI
76 Geering B and Fussenegger M (2015) Synthetic immunology: modulating the human immune system. Trends Biotechnol 33, 65-79   DOI
77 Wei SC, Duffy CR and Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8, 1069-1086   DOI
78 Jaitin DA, Weiner A, Yofe I et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883-1896.e15   DOI
79 Datlinger P, Rendeiro AF, Schmidl C et al (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14, 297-301   DOI
80 Adamson B, Norman TM, Jost M et al (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867-1882.e21   DOI
81 Chopin M, Lun AT, Zhan Y et al (2019) Transcription factor PU.1 promotes conventional dendritic cell identity and function via induction of transcriptional regulator DC-SCRIPT. Immunity 50, 77-90.e5   DOI
82 Haapaniemi E, Botla S, Persson J, Schmierer B and Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24, 927-930   DOI
83 Cullot G, Boutin J, Toutain J et al (2019) CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10, 1136   DOI
84 Xie S, Duan J, Li B, Zhou P and Hon GC (2017) Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell 66, 285-299.e5   DOI
85 Webber BR, Lonetree CL, Kluesner MG et al (2019) Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nature Communications 10, 5222   DOI
86 Moffett HF, Harms CK, Fitzpatrick KS, Tooley MR, Boon-yaratanakornkit J and Taylor JJ (2019) B cells engineered to express pathogen-specific antibodies protect against infection. Sci Immunol 4, eaax0644   DOI
87 Yamada A, Arakaki R, Saito M, Kudo Y and Ishimaru N (2017) Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol 8, 403   DOI
88 Stadtmauer EA, Fraietta JA, Davis MM et al (2020) CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365   DOI
89 Yang L, Pang Y and Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31, 220-227   DOI
90 Tang N, Cheng C, Zhang X et al (2020) TGF-beta inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977   DOI
91 Ren J, Zhang X, Liu X et al (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8, 17002-17011   DOI
92 Riese MJ, Moon EK, Johnson BD and Albelda SM (2016) Diacylglycerol kinases (DGKs): novel targets for improving T cell activity in cancer. Front Cell Dev Biol 4, 108
93 Jung IY, Kim YY, Yu HS, Lee M, Kim S and Lee J (2018) CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res 78, 4692-4703   DOI
94 Norelli M, Camisa B, Barbiera G et al (2018) Monocytederived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24, 739-748   DOI
95 Sterner RM, Sakemura R, Cox MJ et al (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697-709   DOI
96 Tian X, Gu T, Patel S, Bode AM, Lee MH and Dong Z (2019) CRISPR/Cas9 - an evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 3, 8   DOI
97 Teachey DT, Lacey SF, Shaw PA et al (2016) Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6, 664-679   DOI
98 McManus MT and Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-747   DOI
99 Jackson AL and Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57-67   DOI
100 Munoz DM, Cassiani PJ, Li L et al (2016) CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6, 900-913   DOI
101 Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84   DOI
102 Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838   DOI
103 Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10, 973-976   DOI
104 Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588   DOI
105 Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350   DOI
106 Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451   DOI
107 McDade JR, Waxmonsky NC, Swanson LE and Fan M (2016) Practical considerations for using pooled lentiviral CRISPR libraries. Curr Protoc Mol Biol 115, 31.5.1-31.5.13