• Title/Summary/Keyword: biofilms

Search Result 258, Processing Time 0.029 seconds

Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Seong-Jong;Shin, Sung-Kyu;Koh, Sung-Cheol
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.187-193
    • /
    • 2004
  • We have investigated the differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels in terms of electrochemical behavior and surface phenomena. Corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a low level and was maintained throughout the experimental period (40 days). The potential in the presence of SRB, however, shifted to a noble level after 20 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and a formation of corrosion products. In addition, the color of medium inoculated with SRB changed from gray to black. The color change appeared to be caused by the formation of pyrites (FeS) as a corrosion product while no significant color change was observed in the medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher than those in the absence of SRB. This is probably because SRB were associated with the increasing corrosion rates through increasing cathodic reactions which caused reduction of sulfate to sulfide as well as formation of an oxygen concentration cell. The pitting corrosions were also observed in the SRB-inoculated medium.

Ginseng alleviates microbial infections of the respiratory tract: a review

  • Iqbal, Hamid;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.194-204
    • /
    • 2020
  • The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.

Anticandidal Effect of Polygonum cuspidatum on C. albicans Biofilm Formation

  • Lee, Heung-Shick;Kim, Youn-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 2012
  • Candida albicans is a common opportunistic pathogen and is frequently associated with biofilm formation occurring on the surfaces of host tissues and medical devices. On account of the distinct resistance of C. albicans biofilms to the conventional antifungal agents, new strategies are required to cope with these infections. The root of Polygonum cuspidatum has been used for medicinal purposes in East Asia. The aim of this study was to assess the anticandidal potential of the P. cuspidatum ethanol extract by evaluating biofilm formation, integrity of the cell membranes of C. albicans and adhesion of C. albicans cells to polystyrene surfaces. The growth and development of the biofilm was assessed using an XTT reduction assay, and the extract (0.39 mg/ml) significantly reduced ($41.1{\pm}17.8%$) biofilm formation of 11 C. albicans strains. The extract damaged the cell membranes of C. albicans and remarkably inhibited cell adhesion to polystyrene surfaces. The plant extract displayed fungistatic activity without significant hemolytic activity. Based on the results of this study, the P. cuspidatum extract has promising potential for use in treating biofilm-associated Candida infection.

Cellular Automaton Models Revealing Effects of Initial Bacterial Distribution on Biofilm Growth (생물막 성장에 대한 세균의 초기 분포영향을 나타내는 셀룰라오토마톤 모델)

  • Lee, Sang-Hee;Choi, Kyung-Hee;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.297-303
    • /
    • 2004
  • Two dimensional cellular automaton (CA) models were developed to investigate growth of biofilms in aquatic ecosystems. Simple local rules on CA were applied to governing growth of bacterial populations in relation to different nutrient concentrations. Initial bacterial distribution played an important role in determining population size and morphology of biofilm at low concentrations of nutrition. With clumped distribution, population size increased slowly compared with uniform and random distributions, while the porosity tented to be higher with uniform distribution compared with other initial distributions.

The Effects of Rotating Magnetic Field on Growth Rate, Cell Metabolic Activity and Biofilm Formation by Staphylococcus Aureus and Escherichia Coli

  • Fijalkowski, Karol;Nawrotek, Pawel;Struk, Magdalena;Kordas, Marian;Rakoczy, Rafal
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.289-296
    • /
    • 2013
  • This work presents results of the study which concerns the influence of the rotating magnetic field (RMF) on the growth rate, cell metabolic activity and ability to form biofilms by E. coli and S. aureus. Liquid cultures of the bacteria were exposed to the RMF (RMF frequency f = 1-50 Hz, RMF magnetic induction B = 22-34 mT, time of exposure t = 60 min, temperature of incubation $37^{\circ}C$). The present study indicate the exposition to the RMF, as compared to the unexposed controls causing an increase in the growth dynamics, cell metabolic activities and percentage of biofilm-forming bacteria, in both S. aureus and E. coli cultures. It was also found that the stimulating effects of the RMF exposition enhanced with its increasing frequencies and magnetic inductions.

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy

  • Park, Yong Jin;Jeong, Jisu;Kim, Jae Seok;Choi, Dong Soo;Cho, Goang-Won;Park, Jin Seong;Lim, Jong Kuk
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2019
  • Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.

The Biofilm Eradication Using Gentamicin and Anticoagulants as Catheter-Related Infection Prophylaxis in Hemodialysis Patients : A Systematic Review

  • Natasha, Augustine;Timotius, Kris Herawan
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • The use of double lumen catheters as a means of hemodialysis access is commonly accompanied with the use of gentamicin as an antibiotic lock. Other antibiotics and anticoagulants are often added to increase the efficacy of gentamicin in order to reduce catheter-related infection and to prevent biofilm formation. This review aimed to evaluate the following: 1) the use of gentamicin in eliminating catheter-related infection and reducing biofilm formation in hemodialysis catheters, 2) the efficacy of additional antibiotics in combination with gentamicin, and 3) the effect of additional anticoagulants to complement the efficacy of gentamicin as the main prophylactic antibiotic lock. We sorted through data from 242 PubMed and ScienceDirect studies, which were then short-listed to 33 studies. Next, they were grouped, extracted, and analyzed qualitatively to fulfil the objectives of this review. Consequently, the use of a gentamicin-lock solution was shown to reduce the incidence of bacteremia; however, it was not strong enough to inhibit the growth of infectious microbes and formation of biofilms. Several bacteria, such as Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Klebsiella pneumoniae, have been reported as infectious agents. Combination with other antibiotics also provided no effect in reducing bacterial growth and biofilm formation in catheters. Furthermore, the additional anticoagulants (trisodium citrate and EDTA) were reported to be effective in enhancing the efficacy of gentamicin in avoiding catheter-related infection, bacterial growth, and biofilm formation; thus, the use of gentamicin can be rationalized.

Effects of various prophylactic procedures on titanium surfaces and biofilm formation

  • Di Salle, Anna;Spagnuolo, Gianrico;Conte, Raffaele;Procino, Alfredo;Peluso, Gianfranco;Rengo, Carlo
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.6
    • /
    • pp.373-382
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results: AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.

Antibacterial Activity and Anti-inflammatory Effect of Methanol Extracts of Saliva miltiorrhiza Against Oral Pathogenic Bacteria (단삼 메탄올 추출물의 구강 병원성 세균에 대한 항균 및 항염증효과)

  • Lee, JungHyeok;Yim, Dongsool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • This research was conducted to investigate the antibacterial and anti-inflammatory effects of MeOH Ex. of Salvia miltiorrhiza (MESM) against oral pathogenic bacteria. Minimum inhibitory concentration (MIC), removal effect of biofilm produced by Streptococcus mutans, effect of gene expression of proinflammatory cytokines and effect of production of proinflammatory cytokine of MESM were tested. MESM showed moderated antibacterial activity against oral pathogenic bacteria. About 89±8% of biofilms produced by S. mutans were removed by MESM at a concentration of 1 mg/mL. Gene expression of IL-1β and TNF-α induced by Porphyromonas gingivalis were 8~9 folds reduced by MESM. Gene expression of IL-8 induced by Fusobacterium nucelatum were 12 folds reduced by MESM. Production of IL-1β, TNF-α and IL-8 were significantly suppressed by MESM. Conclusively, MESM showed potent antibacterial and anti-inflammatory effect against oral pathogenic bacteria.

Recent applications of lubricant-impregnated nanoporous surface : A Review (윤활액이 담지된 나노다공성 표면의 최신 응용분야)

  • Kyeongwan Han;Kichang Bae;Junghoon Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.